
Journal of Development Economics 133 (2018) 306–325

Contents lists available at ScienceDirect

Journal of Development Economics

journal homepage: www.elsevier.com/locate/devec

Can environmental policy reduce infant mortality? Evidence from the
Ganga Pollution Cases☆

Quy-Toan Do a,*, Shareen Joshi b, Samuel Stolper c,**

a World Bank, USA
b Georgetown University, USA
c University of Michigan, USA

A R T I C L E I N F O

JEL Codes:
Q53
Q56
C36

Keywords:
Environmental policy
Development
Pollution
Infant mortality

A B S T R A C T

In many developing countries, environmental quality remains low and policies to improve it have been inconsis-
tently effective. We conduct a case study of environmental policy in India, focusing on unprecedented Supreme
Court rulings that targeted industrial pollution in the Ganga River. In a difference-in-differences framework, we
find that the rulings precipitated reductions in river pollution and one-month infant mortality, both of which
persist for more than a decade. We then estimate a pollution-mortality dose-response function across twenty-nine
rivers in the Ganga Basin, instrumenting for pollution with its upstream counterpart. The estimation reveals a
significant external health burden of river pollution, not just in the district of measurement, but also on down-
stream communities. It further provides suggestive evidence that reducing pollution was an important driver
behind declines in infant mortality observed after the rulings.

1. Introduction

Environmental economics and development economics are unified
by the persistent puzzle of poor air and water quality in developing
countries (Greenstone and Jack, 2015). A growing literature provides
evidence that pollution imposes a significant health burden (e.g. Jay-
achandran, 2008; Ebenstein, 2012; Brainerd and Menon, 2014), yet
corresponding estimates of willingness-to-pay for environmental qual-
ity are surprisingly low (Kremer et al., 2011) and policies aimed at
improving environmental quality have not reliably done so (Greenstone
and Hanna, 2014; Field et al., 2011). While high levels of air and water
pollution may be due in part to high marginal utility of consumption
(Hanna and Oliva, 2015b) and high marginal costs of pollution abate-
ment (Davis, 2008), they are also likely driven by rent-seeking behavior
(Duflo et al., 2013) and market failures (Jalan and Somanathan, 2008),
hence defining the scope of government regulation.
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India provides a compelling setting in which to study developing-
country environmental health and policy. The World Health Organiza-
tion estimates that over three in every 1000 Indian children under five
years old in 2004 died because of water pollution (WHO, 2004). India’s
Central Pollution Control Board reports that sewage treatment capacity
amounts to only 21 percent of the estimated daily sewage load in Indian
cities (CPCB, 2017a), and the gap between load and treatment capacity
is expanding (Daily Mail, 2015). At the same time, the flagship policy
for addressing water pollution in India – the National River Conserva-
tion Plan (NRCP), established in 1986 and still active today – has failed
to improve water quality (Greenstone and Hanna, 2014).

We investigate a landmark decision in India’s environmental regu-
latory history: the Supreme Court case M.C. Mehta vs. Union of India,
subsequently bifurcated and known as the “Ganga Pollution Cases.”
These cases represent India’s first-ever environmental public-interest
litigation, and their unprecedented rulings – which mandated pollution
cleanup by the tanning industry concentrated along the Ganga River in
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Kanpur, Uttar Pradesh – marked the rise of environmental activism by
the Indian judiciary (Mehta, 2009). Exploiting the quasi-random inci-
dence of the litigation, we find that the ruling is strongly associated
with reductions in both river pollution (as measured by biochemical
oxygen demand [BOD]) and neonatal (one-month) mortality.

Our positive finding is an important data point because, in devel-
oping countries, there is very little evidence of environmental poli-
cies other than piped water provision being successful (Ravallion and
Jalan, 2003; Gamper-Rabindran et al., 2010). Our reduced-form evi-
dence highlights a rare instance of successful policy: judicial-led man-
dates primarily targeting industrial pollution. Our results suggest that
the rulings improved several measures of water quality – BOD as well
as calcium, sulfur, and chloride concentrations – and that mortality
impacts occur primarily in the first month of life. Furthermore, the
rulings’ impacts on pollution and health persist over time for at least
10 years as well as downstream into neighboring districts.

In the second phase of our analysis, we quantify the external infant
health costs of river pollution in general and investigate the mecha-
nisms of the Ganga Pollution Cases’ impacts. To do so, we estimate
a pollution-health dose-response function in the Ganga River Basin.
Since pollution is potentially endogenous, we instrument for it using
its upstream counterpart. This identification strategy has a strong logic:
the decision to pollute upstream is orthogonal to downstream health
inputs, but pollution reliably flows downstream nonetheless. The per-
sistence of downstream impacts of the Supreme Court rulings, as well as
recent research leveraging the upstream-downstream geographic rela-
tionship (Garg et al., 2016), provide further support for our instrumen-
tal variables (IV) strategy.

We first find that exceedance of India’s water quality standards
raises the risk of neonatal mortality by 10–14 percentage points, on
average, in the IV framework; the analogous ordinary least squares
(OLS) regression yields a statistical zero. Since our IV point estimates
are identified by variation in upstream water quality, they also show
that the mortality burden of river pollution persists in downstream
districts. Reduced-form regression of downstream neonatal mortality
on upstream water quality indicate that the downstream mortality
effect is approximately twenty percent of the main, in-district effect.
Prior research documents the flow of pollution into downstream water
sources (e.g., Lipscomb and Mobarak, 2017), but we believe we are
the first to connect such spillovers to economically-meaningful health
impacts. Our work thus underscores the large social costs of continually
poor environmental quality, both at the point of measurement and in
nearby areas linked by surface water flow.

Next, we leverage the IV strategy to investigate the mechanisms at
work. In general, pollution policy may affect health directly through
improved environmental quality, but it may also do so through
increased awareness and avoidance (Kremer et al., 2011; Graff-Zivin
et al., 2011). Reduced-form estimates of policy impacts aggregate the
effects of all such channels. Our finding of simultaneous reductions in
river pollution and neonatal mortality in the Kanpur region is thus a
necessary, but not sufficient, condition for pollution being the primary
channel of the verdicts’ health impact.

Intuition suggests that if reduced water contamination is the only
channel of mortality reductions, then two statements should hold
empirically: there is no residual effect of policy on mortality after
appropriately controlling for pollution; and the policy is a valid instru-
ment for pollution. Testing the degree to which these statements hold
is equivalent to testing the null hypothesis that the policy’s mortality
impacts are fully explained by its pollution impacts. Empirically, we
formulate this as an overidentification test with two instruments for
pollution: upstream pollution and the policy itself. This strategy is rep-
resentative of a more general method of understanding policy impacts
in which outcomes of a policy change are compared to the outcomes
of orthogonal changes in structural parameters (e.g., Angelucci and
Attanasio, 2013).

Armed with a plausibly exogenous source of pollution variation, we
confirm that the two aforementioned statements hold empirically. First,
the policy variable is no longer a significant predictor of mortality once
pollution is included alongside it as an explanatory variable. Second,
our overidentification tests fail to reject the null hypothesis that the rul-
ings are a valid instrument for river pollution – i.e., that water quality
improvements are the only channel through which the verdicts affected
neonatal mortality.

The remainder of this paper is organized as follows. Section 2
describes the Ganga Pollution Cases amidst the more general context
of pollution and related policy in India. Section 3 describes the various
sources of data, while Sections 4 and 5 present our empirical strategy
and results, respectively. Section 6 places our contribution within the
environmental policy literature, especially with regard to the puzzle of
persistently poor environmental quality in the face of large social costs
of pollution. Section 7 concludes.

2. The Ganga Pollution Cases

In the aftermath of several decades of population and industrial
growth, India’s rivers are heavily polluted – particularly in urban areas
(Murty and Kumar 2011). Monitoring of biochemical oxygen demand
(BOD) — a broad-based measure of organic water pollution— carried
out by India’s Central Pollution Control Board (CPCB) shows that, as
of 2011, average readings at approximately 37 percent of all sampling
stations did not meet the government’s standard of acceptability for
bathing set at 3 mg/l (CPCB, 2017b). Waste from domestic consump-
tion, industry, and agriculture all contribute to widespread water qual-
ity problems in surface and groundwater resources (Murty and Kumar
2011).

There have been efforts to improve Indian water quality, but there
is little evidence that they have been successful. The most salient gov-
ernment effort to reduce river pollution is the National River Con-
servation Plan (NRCP), a federal top-down program targeting domes-
tic pollution into India’s surface waters. NRCP began in 1985 as the
Ganga Action Plan but has expanded over 30 years to now cover 190
towns along 41 rivers across India. Its goal since 1987 has been to
restore the Ganga River to the standard for outdoor bathing, as defined
by India’s “Designated Best Use” classification system.1 The primary
lever for achieving this goal has been the “interception, diversion, and
treatment” of sewage (Madhya Pradesh Pollution Control Board, 2017).
To that end, 4704 million-liters per day of sewage treatment capac-
ity have been created since its inception (Ministry of Environment
and Forests, 2013). Nonetheless, popular media and non-governmental
organizations have panned NRCP for reasons such as poor inter-agency
cooperation, funding imbalances across sites, and an inability to keep
pace with growing sewage loads (Suresh et al., 2007). Confirming pub-
lic belief, Greenstone and Hanna (2014) find no discernible impact of
NRCP on water quality levels.

The executive branch, however, is not the only source of environ-
mental regulation in India; the Indian judiciary has, through the years,
developed a reputation for environmental activism (Singh, 2014). Arti-
cle 21 of the Indian Constitution provides citizens with the “Right to
Life”, and much jurisprudence in recent years has centered on the
protection of this constitutional right. This paper examines the first
instance of Supreme Court involvement in issues of river pollution in
India.

The story begins in the pilgrimage city of Haridwar along the Ganga
River. The Ganga is India’s longest river; in the Hindu religion, it
is revered as a goddess. Upwards of 100,000 industrial operations

1 India’s official water quality criteria have five tiers (A-E), each of which includes an
acceptable range for multiple water quality measures, including BOD, dissolved oxygen,
total coliforms, and pH. Outdoor bathing is tier B; tier A corresponds to untreated (but
disinfected) drinking water.
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Fig. 1. A district map of India.

(Mehta, 2009) and 330 million people (CPCB, 2009) reside in its basin
(see Fig. 1). In 1984, a matchstick tossed into the river by a smoker
in Haridwar resulted in the river catching on fire for more than 30 h,
due to a toxic layer of chemicals produced by a pharmaceutical firm
(Mehta, 2009). In response to this event, environmental lawyer and
social activist M.C. Mehta filed a writ petition in the Supreme Court
of India charging that government authorities had not taken effective
steps to prevent environmental pollution in the Ganga’s waters. The
scale of the case – the whole 2500-km stretch of the river – proved to
be intractable. The court requested that Mr. Mehta narrow his focus; he
chose the city of Kanpur (Supreme Court of India, 1985).

Kanpur is a city of 2.9 million people lying directly on the Ganga
in the State of Uttar Pradesh). For more than 100 years, it has been
a major center for India’s tannery industry. Of the 400 tanneries cur-
rently located in Kanpur (The Hindu, 2016), most are concentrated in
the neighborhood of Jajmau, which lay directly on the southern bank of
the Ganga River. Leather processing is a highly polluting industry; the
procedures for washing, liming, fleshing, tanning, splitting, and finish-
ing involve a large number of chemicals (Cheremisinoff, 2001). Tannery
effluent is characterized by large amounts of organic material – which,
when deposited in rivers, depletes dissolved oxygen levels and thus the
overall health of the watershed – and heavy metals like chromium,
which is a documented carcinogen (Stout et al., 2009). It is also known

for its conspicuous reddish-brown color (Durai and Rajasimman, 2011).
Mehta selected Kanpur despite not having been born in or lived in

Kanpur. In interviews granted to our research team in June 2014, he
explained that “[Kanpur] was in the middle of the Ganga Basin, the
reddish color of the pollution made the pollution highly salient, and
the city seemed representative of many other cities in the Ganga Basin.”
The court subsequently split the petition into two parts. The first dealt
with the tanneries of Kanpur and the second with the city government.
These are now respectively called Mehta I and Mehta II in legislative
digests, and are together known as the “Ganga Pollution Cases” – the
foundational water pollution litigation in the Indian court system. In
October 1987, the Court invoked the Water Act and Environment (Pro-
tection) Act as well as Article 21 of the Indian Constitution to rule in Mr.
Mehta’s favor and order the tanneries of Jajmau to clean their wastew-
ater within six months or shut down entirely. This was followed by a
January 1988 judgment that required the Kanpur local municipal bod-
ies to take several immediate measures to control water pollution: the
relocation of 80,000 cattle housed in dairies or the safe removal of ani-
mal waste from these locations; the cleaning of the city’s sewers; the
building of larger sewer systems; the construction of public latrines;
and an immediate ban on the disposal of corpses into the river. The
court also required all schools to devote 1 h each week to environmen-
tal education and awareness.

Of the 87 tanneries named in Mr. Mehta’s petition, approximately
20 were shut down and at least 60 established primary treatment plants
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(PTPs). Moreover, several initiatives were undertaken in 1987 and 1988
to clean drains, expand the number of handpumps, and build latrines
to improve sanitation systems in Jajmau (Alley, 2002). Subsequent lit-
igation in the Supreme Court over the past 25 years, and indeed many
academic researchers of pollution in Kanpur, have argued that these
projects were a failure and that newly established technologies were
not appropriately maintained or used (Alley, 2002; Singh, 2007).

3. Data

To assess the relationship between policy, water quality, and health
in Kanpur, we collect and combine three types of data: infant mortal-
ity, river pollution, and other variables to be used as controls. In most
of our analysis, we restrict our sample geographic area to the Ganga
Basin, which is defined as the area that drains the Ganga and all of its
tributaries. We make this restriction because of the singularity of this
area in the context of our analysis. The Ganga Basin is not only a much
more densely populated region than anywhere else in India, but also a
region in which water issues have received special government atten-
tion: the National River Conservation Plan (NRCP) focused exclusively
on the Ganga Basin (including the Ganga, Yamuna, Damodar, Gomti,
and Mahananda Rivers) throughout its first 10 years (1986–1995).
Extending the analysis beyond this region might confound the effect
of the Supreme Court ruling with the effect of broad scrutiny in the
Ganga Basin during this time period.

3.1. Health data

We choose infant mortality as our primary health outcome. This
choice conveys at least two significant statistical advantages. First, as
noted by Chay and Greenstone (2003), infant survival is a short-term
measure; other measures of health stock, captured later in life, neces-
sarily reflect the effect of many more health shocks experienced in an
individual’s lifetime. Second, complete birth histories are available in
certain Indian demographic surveys, so we can construct long pseudo-
panels of infant survival to maximize statistical power. In contrast,
morbidity variables such as diarrhea incidence and low birth weight
are only available cross-sectionally from the time of survey; too few
of such surveys have been completed for us to construct a meaningful
panel. Panel variation in infant mortality allows us to include detailed
temporal and cross-sectional fixed effects in regression analyses, which
account for time-varying shocks to national infant health and time-
invariant characteristics of specific areas, respectively.

We focus primarily on deaths within the first month of life, i.e.,
neonatal mortality, although we also test for a policy impact on one-
year mortality. The first month is the most vulnerable period of an
infant’s life (United Nations Children’s Fund, 2015). Globally, neonatal
mortality accounts for over half of all infant deaths (World Develop-
ment Indicators, 2017); in our own data from India, its share of under-
one mortality is 70 percent. Furthermore, several existing studies of pol-
lution – in both water and air – and child health show that the largest
impacts occur within one month of birth (Chay and Greenstone, 2003;
Gluckman et al., 2008; Currie and Almond, 2011; and Brainerd and
Menon, 2014). While neonatal mortality is not a complete measure of
the health costs imposed by water pollution, it nonetheless represents a
very large loss of life, especially in the Indian context.

Our infant health data come from the Reproductive and Child Health
II (RCH-2) module of the District-Level Household Survey II (DLHS-2),
a national demographic survey conducted in two phases from 2002 to
2005. In the RCH-2 module, mothers report age and survival for all of
their children; from these birth histories, we create a panel of child-
month mortality in the first year. The full national dataset spans the
years 1967–2004. The first four years of this range includes 2, 0, 0, and
6 reported births nationally; starting in 1971, the reported birth count
rises roughly monotonically from 42 towards its peak of 80,961 in 1998.
Because of the lack of data from 1967 to 1970, we drop these years from

the sample. This leaves us with with 1,393,330 birth observations from
the years 1971–2004, 647,865 of which are to mothers living within
the Ganga Basin (240 districts) at the time of survey.

3.2. Pollution data

To measure water quality, we use river pollution data collected
under the auspices of India’s National Water Quality Monitoring Pro-
gram (NWMP). These data were originally gathered by Greenstone and
Hanna (2014), from a combination of CPCB online and print records.
The dataset spans the whole of India and runs from 1986 to 2004; an
observation is a pollution monitor-month.

The national dataset contains information from 470 monitors situ-
ated along 162 rivers in 28 states. Excluding all areas outside the Ganga
Basin leaves us with 101 unique pollution monitors along 29 rivers, in
62 districts representing 10 states; these are mapped in Fig. 2. Over
our 19-year period of observation, as many as 46 different measures of
water quality are recorded at these monitoring stations, but only a few
measures are consistently recorded over the entire sample time frame.
The data are noisy, suggesting significant measurement error, and the
panel is imbalanced. To mitigate these problems, we collapse monitor-
level observations to the district level and construct moving averages of
the data over a four-month window. These steps produce 8725 district-
month observations in the Ganga Basin with at least one non-missing
value from our pollution measures of interest.

Our main indicator of river quality is BOD. This common, broad-
based indicator of water pollution captures the amount of dissolved
oxygen needed by water-borne, aerobic organisms to break down
organic material present at a certain temperature (usually 20 ◦C) and
over a specific time period (usually five days). Its units are milligrams
of oxygen consumed per liter (mg/l). Reduction of BOD is the primary
goal of waste treatment plants in general (Brown and Caldwell, 2001),
but BOD is a particularly good choice for pollution measurement in the
setting of Kanpur. Pollution from the tanning process primarily comes
from two sources: the animal hides themselves, and the chemicals used
to tan them. Both of these sources contain large amounts of organic
matter, resulting in abnormally high BOD levels in tannery effluent.
According to the United Nations Industrial Development Organization
(UNIDO), effluent discharge into surface water typically is required to
have BOD below 30–40 mg/l, while the typical BOD in raw tannery
effluent is approximately 2000 (UNIDO, 2011).

Use of a broad-based indicator of pollution raises the issue that it is
likely affected by a variety of factors, not just the activities of tanneries.
During the Supreme Court hearings, lawyers representing the tanneries
argued that other firms, a negligent Kanpur municipality, and other
negligent municipalities were contributing to the pollution around the
tanneries (Mehta, 2009: 78–82). This argument, however, was eventu-
ally dismissed in light of a report from the CPCB which demonstrated
that the specific pollutant readings in the river were not even theoreti-
cally capable of being generated by any entity other than the cluster of
tanneries (Mehta, 2009: 83–84). Field reports of Jajmau report no other
major industry in the area (Alley, 2002).

In most of our analysis, we parameterize BOD as a dummy variable
equaling one if average BOD in a district-month exceeds the national
standard of 3 mg/l for bathing in surface water.2 This 3-mg/l thresh-
old is also a stated goal of the National River Conservation Plan, and
is consistent with the critical values used by regulatory agencies in
other countries (APHA, 1992). It is also consistent with the standards
of proper measurement. According to the International Standards Orga-
nization (2003), the limit of detection for BOD is 3 mg/l; that is, BOD
readings below three cannot be statistically distinguished from zero.

2 In addition to this BOD standard, suitability for outdoor bathing requires a total
coliforms concentration of less than 5 per ml, pH between 6.5 and 8.5, and dissolved
oxygen levels exceeding 5 mg/l.
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Fig. 2. Pollution monitors in the Ganga basin.

These and other water quality standards in general highlight the non-
linear nature of the pollution–health relationship that has been docu-
mented in previous economics research on pollution and health (Chay
and Greenstone, 2003; Ebenstein, 2012). For comparison, we also use
the natural logarithm of BOD in certain analyses.

We also consider four other pollutants that shed additional light on
the impacts of the Kanpur Supreme Court verdicts: calcium, sulfates,
chlorides, and fecal coliforms (FCOLI). Calcium is the key component
of lime, which is a standard ingredient used in the removal of hair and
flesh and the splitting of the hide into its two primary layers. Sulfate
and chloride ions, meanwhile, are the main components of the total dis-
solved solids (TDS) produced in tanning.3 All three of these pollutants
are measured in milligrams per liter (mg/l). Fecal coliforms (FCOLI)
are an oft-used measure of domestic (as opposed to industrial) pollu-
tion, which was a major focus of the second verdict in the Ganga Pol-
lution Cases. It is measured as the “most probable number” of coliform
organisms per 100 mL of water (MPN/100 ml, reported in thousands).
Other theoretically-relevant pollutants in our context are not recorded
consistently in our time period.4

3.2.1. Assignment of upstream pollution
Part of our analytical strategy relies on the measurement of pollu-

tion upstream of a given location. Such measurement requires informa-
tion on the precise location of pollution monitors. Unfortunately, lat-
itude and longitude of monitors are incomplete and unreliable in our

3 Chloride ions are highly soluble in water, so their concentration is insensitive to
standard tannery waste treatment (UNIDO, 2011). However, surface-water chloride lev-
els may respond to other policy impacts on the tanning industry, such as reduction or
cessation of tannery operations.

4 Total suspended solids (TSS) and total dissolved solids (TDS) are potential alterna-
tives to BOD in our analysis, but the first of these is not recorded in large numbers in
our data, and the second is not recorded in Kanpur prior to the verdicts. Chromium, per-
haps the highest-profile pollutant in the tanning process, was not widely measured by the
CPCB as of 2004.

dataset. To circumvent this problem, we manually map each monitor
according to the administrative descriptors provided (state, town, river)
and an accompanying string description of location (e.g., “Sabarmati at
Ahmedabad at V.N. Bridge”). With our monitors mapped, we trace the
path of all rivers in our sample, from origin to last monitor downstream,
and measure distances along the river between all pairs of neighboring
monitors.

How far upstream should upstream pollution be measured? Two
issues arise when answering this question. First, many water quality
monitors in our dataset have more than one possible upstream counter-
part. Second, there is no single “correct” distance at which to measure
upstream pollution. The larger this distance, the weaker the upstream
instrument will be as a result of pollution decay. On the other hand,
monitors that are closer together are more likely to be subject to com-
mon shocks such as rainfall, which would create spurious correlation.

We thus adopt a variety of definitions of “upstream”, and check the
robustness of our results to the definition used. To assign an upstream
counterpart to a given pollution monitor, we use the following pro-
tocol: first, we follow the river upstream until it reaches a new dis-
trict; then, we locate the nearest monitor along the river that falls
within a distance range (in km) of [X,Y] from the original monitor,
where X ∈ {0,20,50,75,100} and Y ∈ {200,300}. When a river splits
upstream of a given monitor, so that there is an upstream monitor
on each of two tributaries, we take the unweighted average pollution
reading of these monitors as our upstream measure.5 When there is no
upstream monitor of any kind to be found, we use the river’s origin as
an upstream location (subject to the distance-range requirement) and
assign the sample-wide minimum value of pollution as our upstream
measure.

5 We are unable to weight tributaries by their contribution to downstream water flow,
due to a lack of data on volumetric flow rates at specific locations.
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3.3. Other data

We include several types of variables as controls in many of our
regression analyses. The main body of these controls consists of cross-
sectional birth, mother, and child characteristics taken from RCH-2.
A pair of climate controls are created using monthly, gridded rainfall
totals from the University of Delaware and air temperature averages
from the Indian Meteorological Institute; we use these gridded aver-
ages to interpolate monthly rainfall and temperature values at each dis-
trict (in mortality-only regressions) or monitor (in regressions involving
pollution). Finally, we add time-varying measures of common effluent
treatment plant (CETP) capacity and the incidence of the NRCP, which
capture the non-uniform intensity of environmental cleanup and policy
efforts within the Ganga Basin.6

4. Empirical strategy

Our aim is to determine whether or not the 1987 Supreme Court
decision affected environmental quality or health outcomes. Our analy-
sis has two broad parts. In the first part, we use difference-in-differences
(DD) – comparing outcomes in the affected area to those elsewhere in
the Ganga Basin, before and after the verdict – to estimate the impacts
of Mehta vs. Union of India on infant mortality and river pollution.
In the second, we employ instrumental variables (IV) to identify the
direct relationship between river pollution and neonatal mortality. The
IV strategy serves two purposes: first, it quantifies an important com-
ponent of the external damages of river pollution; and second, it sheds
some light on the mechanisms through which environmental regulation
affects health.

4.1. Difference-in-differences

We specify the reduced-form impact of the Supreme Court verdict
on neonatal mortality as follows:

Mortalityidt = 𝛼1 + 𝛼2Tdt + Xidt𝜂 + eidt (1)

where Mortalityidt is a dummy variable indicating whether a child i,
born in district d, in year-month t, died within the first month of life.
Tdt captures the incidence of policy – the Mehta vs. Union of India
court decisions in our case – and takes a value of one in affected —
or “treated”— districts after October 1987 and zero otherwise. Xidt is
a vector of individual, location-by-time characteristics, which includes
district and year-month fixed effects. The verdict’s impact on river pol-
lution is specified analogously:

Pollutiondt = 𝛽1 + 𝛽2Tdt + Xidt𝜃 + 𝜖idt (2)

where Pollutiondt is a dummy for BOD greater than 3 mg/l in district d
and year-month t.

From the pool of all Ganga Basin districts, we define our “treatment
group” to comprise four districts: Kanpur Nagar, Unnao, Fatehpur, and
Rae Bareli. This definition is justified by two facts. First, these are the
four districts whose water quality is most likely to be affected by the
verdict. Kanpur Nagar is the physical locus of the verdict; Unnao shares
the same stretch of the Ganga River with Kanpur Nagar; and Fateh-
pur and Rae Bareli are the first districts downstream of these two, with
borders approximately 28 and 44 km from the Jajmau tannery clus-
ter, respectively (in fact, the Jajmau tanneries are very near to Kanpur
Nagar district’s downstream border, so that the majority of Kanpur’s
population is not directly exposed to tannery pollution). Second, Unnao
city contains its own cluster of tanneries, so inclusion of this district

6 We do not have any other information about the placement, utilization or other oper-
ational details of this CETP, or others like it, in India. All the results in this paper however,
are robust to the exclusion of these policy controls.

in the treatment group yields impacts that are net of any tanning out-
put “leakage”. Nonetheless, we also test the robustness of our results to
the exclusion of one or more non-Kanpur districts from the treatment
group.7

The crux of our identification strategy is the assumption that
Cov(Tdt , 𝜖idt) = 0 – i.e., that the policy variable is uncorrelated with
all unobserved predictors of neonatal mortality (and of pollution). We
argue that this is a plausible assumption because environmental public
interest litigation had no prior precedent in India, and because M.C.
Mehta’s choice of Kanpur was motivated primarily by its central loca-
tion and the salience of pollutants coming from its tanneries (M.C.
Mehta, personal communication, 12/16/2014). Thus, Kanpur was not
a priori chosen on the basis of temporal trends in pollution, health, or
citizen involvement. In fact, there is no evidence of any local movement
to reduce pollution in the city in the mid-1980s (Jaiswal, 2007).

To visually inspect the credibility of our identification assumption,
we plot annual averages of both neonatal mortality and exceedance
of the BOD threshold in the treatment and control groups over time;
the annual averages smooth out otherwise noisy monthly time series.
We then fit equations (1) and (2) to produce point estimates of policy-
induced mean-shifts in these outcomes. In all cases, mortality regres-
sions are run with child-month observations and pollution regressions
are run with district-month observations.

4.2. Instrumental variables

Estimation of equation (1) yields the reduced-form impact of policy
on neonatal mortality, but it provides no information on the mecha-
nisms of that impact. Theoretically, the Supreme Court decision could
have had an impact on mortality through three channels: (i) reduced
water contamination, (ii) reduced exposure to contaminated water, and
(iii) increased ability to cope with the consequences of pollution. In
our context, it is likely that, in addition to reducing water contamina-
tion, the Supreme Court verdicts also drew attention to the river pol-
lution problem; this could have driven households to avoid exposure
through water-source switching or filtration, and to seek information
on how to treat the consequences of contamination. Policy research in
the environment-development literature frequently does not attempt to
disentangle the relative importance of the reduced-contamination chan-
nel from that of other possible channels (e.g., Greenstone and Hanna,
2014; Watson, 2006).

In principle, knowledge of river pollution’s direct impact on mor-
tality can improve policy design. First, in quantifying the health bur-
den imposed by pollution, we gain a sense of the potential for health
improvements through policies that reduce pollution. Second, we can
use this “dose-response function” to translate estimated policy impacts
on pollution (from equation (2) into a prediction of policy impacts
on mortality exclusively through the reduced-contamination channel. If
that prediction differs significantly from our reduced-form estimates of
policy impacts on mortality (from equation (1)), it is evidence that the
policy operates at least in part through other channels. Note, more-
over, that the reduced-contamination channel captures both the direct
impact of the Supreme Court decision and any follow-on contamination-
reducing policies communities could have undertaken in the aftermath
of the verdicts.

Our primary obstacle in estimating a pollution-mortality dose-
response function is the endogeneity of pollution. In general, pollution
is correlated with other factors affecting mortality, such as urbaniza-
tion (which brings access to health care facilities and education) and
economic productivity (which raises incomes). To solve this problem,
we instrument for pollution in a given location-time with its upstream

7 There is no pollution monitor in Fatehpur district, so the treatment group contains
only three districts in regressions involving pollution data.
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Table 1
Summary statistics for all variables.

Treatment (Kanpur region) Control (Rest of Ganga Basin)

N Mean St. Dev. Min Max N Mean St. Dev. Min Max

Panel A. Child-level variables
1[Child died in the first month of life] 8175 0.08 0.27 0 1 639,690 0.06 0.25 0 1
1[Child died in the first year of life] 8175 0.11 0.32 0 1 639,690 0.09 0.29 0 1
1[Child died in the first year of life | survived first month] 7517 0.04 0.19 0 1 598,254 0.03 0.18 0 1
1[Child was born after the verdict] 8175 0.81 0.40 0 1 639,690 0.83 0.38 0 1
1[Mother is Hindu] 8175 0.80 0.40 0 1 639,690 0.84 0.37 0 1
1[Scheduled Caste/Scheduled Tribe] 8175 0.29 0.45 0 1 639,690 0.27 0.44 0 1
Age of mother (years) at time of interview 8175 33.19 6.68 15 44 639,690 32.58 6.71 15 44
1[Mother is literate] 8175 0.35 0.48 0 1 639,690 0.33 0.47 0 1

Panel B. District-level variables
Ln(BOD) 383 1.07 0.27 0 2 8048 0.94 1.06 −2 5
1[BOD > 3] 383 0.34 0.48 0 1 8048 0.39 0.49 0 1
1[FCOLI > 50] 285 0.59 0.49 0 1 6147 0.34 0.47 0 1
1[Calc > median] 380 0.36 0.48 0 1 6394 0.51 0.50 0 1
1[Sulfates > median] 294 0.50 0.50 0 1 6275 0.49 0.50 0 1
1[Chlorine > median] 386 0.59 0.49 0 1 6842 0.49 0.50 0 1
Air temperature (degrees C) 1095 25.47 5.95 11.92 35.47 84,740 24.78 5.71 8.1 36.11
Monthly precipitation (mm) 1095 71.32 110.76 0 706.26 84,740 89.77 134.55 0 1467.02
1[National River Conservation Plan] 398 0.56 0.50 0 1 8337 0.43 0.50 0 1
Common Effluent Treatment Plant capacity (MLD) 398 0.00 0.00 0 0 8337 0.12 1.29 0 24

Notes: In Panel A, an observation is a child. In Panel B, it is a district-month. The sample marked ‘Treatment’ consists of observations from Kanpur, Unnao, Fatehpur, and Rae Bareli
districts. The sample marked ‘Control’ consists of observations from all other districts in the Ganga Basin.

counterpart, as defined in Section 3. The logic of this instrument lever-
ages the unidirectional flow of rivers: upstream pollution reliably flows
downstream (subject to some decay function of distance) to impart a
negative health impact, and yet the determinants of this upstream pol-
lution are plausibly orthogonal to downstream determinants of health.
Our implicit assumption is that river flow is distinct from movements in
economic, political and demographic variables, which likely take longer
to diffuse from upstream to downstream.

We start by estimating the reduced-form analog of our IV strategy:

Mortalityidt = 𝛾1 + 𝛾2Tdt + 𝛾3Pollutionu
dt + Xidt𝜙+ 𝜖idt , (3)

where Pollutionu
dt is the pollution reading upstream of district d in year

t. The primary parameter of interest in equation (3) is 𝛾3, the impact of
upstream pollution on downstream mortality. The point estimate of 𝛾3
gives us a first check on whether our IV strategy will successfully iden-
tify the dose-response function; it also provides a causal estimate of the
downstream external damages created by pollution, hence extending
the work of Lipscomb and Mobarak (2017) and Sigman (2002, 2005)
on the presence of pollution spillovers. Moreover, we can test the credi-
bility of our instrument with a falsification test: for every district in our
pollution sample, we replace our first-choice “upstream district” with
the nearest off-river district available in our data and re-estimate equa-
tion (3). Statistical insignificance of 𝛾3 in the falsification check is a
necessary condition of instrument validity.

We then estimate our full two stage least squares (2SLS) model
using, as a first stage,

Pollutiondt = 𝛾 ′1 + 𝛾 ′2Tdt + 𝛾 ′3Pollutionu
dt + Xidt𝜙

′ + 𝜖′idt (4)

and, as a second stage,

Mortalityidt = 𝛾1 + 𝛾2Tdt + 𝛾3
̂Pol l utiondt + Xidt𝜙+ 𝜖idt . (5)

Coefficient 𝛾3 in equation (5) now provides the estimated impact of
river pollution on neonatal mortality in the average district. This point
estimate provides a reference point for the magnitude of pollution’s
burden on infant health. Combining this with the spillover mortality
impact in the next district downstream identified from equation (3), we
have a summary estimate of the external infant mortality cost imposed

by river pollution.
Equations (4) and (5) also provide the basis for testing the mecha-

nisms at work. We compare the estimated mortality burden of pollution
with a single instrument (upstream pollution) to the estimated burden
with two instruments (adding the Supreme Court verdict). If the policy
affects health through non-pollution channels, then an overidentifica-
tion test should reject the null hypothesis that the policy instrument is a
valid instrument for pollution. This null will also be rejected if the effect
of pollution on mortality is heterogeneous across (e.g.) locations or pol-
lutants, so that each of the two instruments measures a different local
average treatment effect. Failure to reject the null, on the other hand,
provides suggestive evidence that pollution is the primary channel of
policy-induced reductions in neonatal mortality. The overidentification
test uses a C-statistic (see, e.g., Eichenbaum et al., 1988), also known
as a difference-in-Sargan test statistic. It is equal to the difference of the
two Sargan-Hansen J-statistics obtained from the regression using both
Tdt and Pollutionu

dt as instruments on the one hand and the regression
using only Pollutionu

dt on the other hand.8

5. Results

We report summary statistics for each analysis variable in Table 1,
comparing the treatment group to the control group. The top panel tab-
ulates statistics from variables observed at the child level. The bottom
panel, meanwhile, describes those variables that we measure at the dis-
trict level.

We highlight several noteworthy observations from Table 1. District-
level neonatal and infant mortality rates over our observed time period
are somewhat larger (8 percent and 11 percent, respectively) in the
treatment group than in the control group (6 percent and 9 percent,
respectively). These Ganga Basin rates are, in turn, larger than the
analogous national rates of 5.3 percent and 7.6 percent in our data,

8 In Appendix B, we formally derive this test from a sparse model of pollution, policy,
and health.
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Fig. 3. Neonatal mortality: Graphical difference-in-differences.

respectively.9 Meanwhile, average log-BOD is higher in the treatment
group than in the control group (1.07 vs. 0.94), but the relationship
flips when we summarize the frequency of exceeding the national stan-
dard of BOD < 3 mg/l for “bathing class” water (0.34 in the treatment
group vs. 0.39 in the control group). Moreover, there is no consistent

9 According to the World Development Indicators (2017), the national infant mortality
rate was 14.6 in 1971 and 5.78 in 2004; our measured sample-wide rate of 7.6 is closer
to the latter number because births recorded in DLHS-2 are predominantly from more
recent years.

Fig. 4. Biochemical oxygen demand: Graphical difference-in-differences.

relationship between treatment and control across all pollutants consid-
ered: high sulfate and chloride levels are more frequently observed in
the Kanpur region, but high calcium levels are less frequently observed
there, and high FCOLI levels are about equally likely to occur in each
group. While Table 1 reveals several cross-sectional differences between
the treatment and control, the inclusion of district fixed-effects controls
for these differences.
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Table 2
Mehta vs. Union of India and Infant Mortality.

(1) (2) (3) (4) (5) (6)
IM NM Cond. IM IM NM Cond. IM

1[Kanpur] X 1[Post-Verdict] −0.005***
(0.001)

−0.024***
(0.006)

−0.002
(0.001)

−0.004***
(0.001)

−0.020***
(0.005)

−0.001
(0.001)

Dependent variable mean 0.008 0.065 0.003 0.010 0.073 0.004
Sample time frame 1971–2004 1971–2004 1971–2004 1980–1994 1980–1994 1980–1994
Adj. R-Squared 0.003 0.014 0.001 0.003 0.017 0.001
N 7,215,872 647,861 6,568,008 3,440,687 326,430 3,114,257

Notes: All results are based on estimation of equation (1). An observation is a child-month. In all columns, the dependent variable is a dummy
for mortality. In columns 1 and 4, the sample includes all observations from the first twelve months of life and corresponds to infant mortality
(IM). In columns 2 and 5, the sample includes only observations from the first month, corresponding to neonatal mortality (NM). Columns 3 and
6 include observations from months 2–12, which captures infant mortality conditional on neonatal survival (Cond. IM). All regressions include a
set of controls (religion of the household head, caste of the household head, mother’s age, mother’s literacy, CETP capacity, air temperature, total
precipitation, and NRCP dummy) and district and year-month fixed effects. Observations are weighted by the product of survey sampling weight
and inverse size of the relevant age cohort (in months). Standard errors are clustered at the district level in parentheses. ***, **, and * indicate
statistical significance at the 1, 5, and 10 percent levels, respectively.

5.1. Difference-in-differences: a graphical representation

We begin our analysis by graphically inspecting our difference-in-
differences (DD) assumption of parallel trends in the treatment and
control group. The results are depicted in Figs. 3 and 4. In both fig-
ures, data points are annual averages of monthly observations in either
the treatment group or the control group. Pre-ruling summary statistics
for treatment and control are provided in Appendix Table A1.

Fig. 3 contains two panels; the top panel shows neonatal mortal-
ity averages from the full period, while the bottom panel uses data
within a smaller, symmetric 15-year window (1980–1994) surround-
ing the Supreme Court verdicts. In both panels, the vertical distance
between the treatment and control group means is smaller after the ver-
dicts than before them. The smaller scale of Panel B allows for a closer
look, which shows parallel decreasing pre-trends, a roughly-constant
slope in the control group over the full period, and a drop in treatment-
group mortality in the aftermath of the verdicts.

Fig. 4 provides analogous results for river pollution, using a dummy
for exceedance of the bathing quality standard (BOD > 3) as the depen-
dent variable. Since this specification requires pollution data, the full
time period available to us is 1986–2004. The top panel utilizes the
full period, while the bottom panel restricts the estimation sample to
1986–1994 – a “short-run” post-period. Here, the outcome variable is
somewhat noisy in the treatment group. In the short pre-period avail-
able to us for pollution, however, treatment- and control-group trends
are parallel. Meanwhile, the likelihood of BOD exceeding the 3-mg/l
cutoff drops significantly for the treatment group in the post-period,
indicating a large DD estimate of the impact of the ruling on water
quality.

While in principle it is possible to compare our treatment group to
a single nearby (but not downstream) control district, inherent noise
in our infant mortality and pollution data makes such a comparison
imprecise. We illustrate this in Appendix Fig. 1 by plotting average
mortality (Panel A) and pollution (Panel B) in the treatment group and
in a single district (Kannauj) just upstream of Kanpur Nagar.10 These
graphs document a large time-series variance in outcomes of interest.
Using the entirety of the Ganga Basin in our control group allows us to
smooth our counterfactual significantly.11

10 The district of Kannauj is immediately upstream of Kanpur Nagar. The two Kannauj
pollution monitors in our data lay approximately 93 km upstream of the tanneries.

11 We also test the robustness of the graphical DD strategy to the definition of the treat-
ment group, by graphing treatment- and control-group average outcomes after redefining
the treatment group to only include Kanpur Nagar district itself. The results are depicted
in Appendix Fig. A2; they do not change in any qualitatively meaningful way.

5.2. The impact of Mehta vs. Union of India on infant health

To obtain a point estimate of the Supreme Court verdicts’ impact on
infant health, we estimate equation (1). Table 2 provides our first set of
results from this estimation. In columns 1–3, we use the full 1971–2004
period, while in columns 4–6, we use the shorter 1980–1994 period.
Within each of these triplets, the first column uses one-year (infant)
mortality as the dependent variable, the second uses one-month (neona-
tal) mortality, and the third uses one-year mortality conditional on sur-
vival past the first month. In all columns, we multiply RCH-2 sampling
weights by the inverse size of the relevant age cohort and use these
as weights – for example, all observations from children at an age of
one month are assigned a weight equal to (1/# of observations with
age = one month). This weighting makes possible the translation of our
point estimates, which come from monthly observations, into aggregate
changes in mortality risk across the whole full first year of an infant’s
life.12

The remainder of the columns in Table 2 separate out these one-year
mortality results into impacts in the first month of life vs. in months two
through twelve. Given a baseline neonatal mortality risk of 12.1 percent
in the treatment group prior to the verdicts, columns 2 and 5 indicate
large impacts, with statistically significant point estimates of −0.024
(or 19.5 percent) and −0.020 (or 16.2 percent), respectively. Mean-
while, the estimated mortality impact in months two through twelve is
a much smaller and statistically insignificant −0.001 in both column 3
and column 6. Together, Tables 1 and 2 reveal that most infant mortal-
ity events are neonatal and that the environmental policy in question
here is associated with large-magnitude reductions in neonatal mortal-
ity – on the order of 16–20 percentage points. The adverse effect of
pollution beyond the first month is more likely to be captured by mor-
bidity, which we do not observe over time. We thus focus exclusively on
neonatal mortality for the remainder of this paper, touching on possible
mechanisms of exposure in Section 6.

We explore the timing and geography of the verdicts’ impacts on
neonatal health in Table 3, using the same child-month mortality panel
as in Table 2. Columns 1–3 show results from neonatal mortality regres-
sions using post-periods of different lengths, while column 4 shows
results from simultaneous estimation of short-, medium-, and long-run
policy impacts. Column 5 tests the robustness of the main effect to the
use of all of India as a control group. All estimates are statistically sig-
nificant at the five-percent level or lower. Magnitudes range from 2 to
3.5 percentage points in these columns, which imply a 16–29 percent

12 For example, column 1 indicates that, after the verdicts, the probability of infant
death in a given month drops by 0.005 in the Kanpur region. This translates to a 28.9
percent reduction in the aggregate risk of infant mortality. The significance of point esti-
mates in Table 2 is unaffected by choice of weights.
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Table 3
Timing and scope of neonatal mortality impacts.

Dependent variable: 1[Child died in first month of life]

(1) (2) (3) (4) (5) (6) (7)

1[Kanpur] X 1[Post-Verdict] −0.026***
(0.006)

−0.027***
(0.005)

−0.020***
(0.005)

−0.026***
(0.005)

−0.020***
(0.005)

1[Kanpur] X 1[10/1987 < t < 12/1994] −0.020***
(0.005)

1[Kanpur] X 1[1/1995 < t < 12/1999] −0.035***
(0.006)

1[Kanpur] X 1[1/2000 < t < < 12/2004] −0.024**
(0.010)

Kanpur X 1[Some in utero treatment] 0.016
(0.015)

Kanpur X 1[Full in utero treatment] −0.029***
(0.010)

1[Near Downstream] X 1[Post-Verdict] −0.032***
(0.005)

1[Intermediate Downstream] X 1[Post-Verdict] 0.000
(0.007)

1[Far Downstream] X 1[Post-Verdict] −0.004
(0.007)

Dependent variable mean 0.064 0.067 0.073 0.064 0.059 0.073 0.073
Geographic coverage Ganga Ganga Ganga Ganga India Ganga Ganga
Sample time frame 1980–2004 1980–1999 1980–1994 1980–2004 1980–1994 1980–1994 1980–1994
Adj. R-Squared 0.013 0.014 0.017 0.013 0.021 0.017 0.017
N 633,530 509,490 326,430 633,530 720,640 326,430 326,430

Notes: All results are based on estimation of equation (1). An observation is a child-month. The dependent variable in all columns is a binary variable equaling one if a child
died in the first month of life. All regressions include a set of controls (religion of the household head, caste of the household head, mother’s age, mother’s literacy, CETP
capacity, air temperature, total precipitation, and NRCP dummy) and district and year-month fixed effects. Observations are weighted by survey sampling weights. Standard
errors are clustered at the district level in parentheses. ***, **, and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Table 4
Mehta vs. Union of India and Pollution.

Panel A. Biochemical Oxygen Demand 1[BOD > 3] Ln(BOD)

(1) (2) (3) (4) (5) (6) (7) (8)

1[Kanpur] X 1[Post-Verdict] −0.534***
(0.058)

−0.568***
(0.050)

−0.607***
(0.055)

−0.696***
(0.028)

−0.637***
(0.052)

−0.236*
(0.125)

−0.108
(0.116)

1[Kanpur] X 1[10/1987 < t < 12/1994] −0.492***
(0.133)

1[Kanpur] X 1[1/1995 < t < 12/1999] −0.548***
(0.079)

1[Kanpur] X 1[1/2000 < t] −0.578***
(0.133)

1[Near Downstream X 1[Post-Verdict] −0.655***
(0.051)

1[Intermediate Downstream X 1[Post-Verdict] −0.249
(0.229)

1[Far Downstream X 1[Post-Verdict] 0.060
(0.058)

Dependent variable mean 0.392 0.408 0.416 0.392 0.286 0.416 0.947 0.889
Geographic coverage Ganga Ganga Ganga Ganga India Ganga Ganga Ganga
Sample Time Frame 1986–2004 1986–2000 1986–1994 1986–2004 1986–1994 1986–1994 1986–2004 1986–1994
Adj. R-Squared 0.563 0.559 0.594 0.563 0.553 0.608 0.781 0.800
N 8431 5530 2883 8431 12,521 2883 8431 2883

Panel B. Non-BOD Pollutants Calcium Sulfates Chlorides FCOLI

(1) (2) (3) (4)

1[Kanpur] X 1[Post-Verdict] −0.178**
(0.074)

−0.444***
(0.048)

−0.149**
(0.056)

−0.010
(0.101)

Dependent variable mean 0.631 0.551 0.458 0.447
Geographic coverage Ganga Ganga Ganga Ganga
Sample Time Frame 1986–1994 1986–1994 1986–1994 1986–1994
Adj. R-Squared 0.595 0.412 0.650 0.531
N 2616 2542 3018 2003

Notes: All results are based on estimation of equation (2). An observation is a district-month. The dependent variable is listed above each column number. All regressions include a
set of controls (CETP capacity, air temperature, total precipitation, and NRCP dummy) and district and year-month fixed effects. Standard errors are clustered at the district level in
parentheses. ***, **, and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.
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drop in neonatal mortality rates as a result of the rulings. Pairwise F-
tests reject the null hypothesis that the 1995–1999 (medium-run) coef-
ficient is equal to either of the other two period-specific coefficients
(p-value < 0.01).

In column 6, we investigate the extent to which the mortality reduc-
tion is driven by reduced in utero exposure to pollution. To do so, we
categorize treatment-group births by their degree of in utero exposure.
All children born after the Supreme Court verdicts experience lower
post-natal exposure. However, children born in the first nine months
after the Supreme Court verdicts (November 1987 to July 1988) experi-
ence only partial in utero reduction in exposure to contaminated water,
while children born after July 1988 fully benefit from the effect of
the verdicts. We define dummies for these two groups of children in
the treatment region and estimate impacts for each group simultane-
ously. The predictive effect of fully benefiting from the verdicts while
in utero is a statistically-significant 2.9 percentage-point drop in neona-
tal mortality risk. Meanwhile, for children only partially “treated” by
the Supreme Court rulings while in utero, we find a positive though sta-
tistically insignificant effect on mortality risk. This result is consistent
with much existing evidence that links mother’s health to the risks of
neonatal mortality (Gluckman et al., 2008; Currie and Almond, 2011).
We note, however, that the difference between being partially and fully
affected by the policy in utero and other temporal factors cannot be
disentangled. That is, other changes in the treatment region after July
1988 could also explain the result – for instance, relatively weaker pol-
icy effectiveness in the initial year following the verdicts.

In column 7, we test whether neonatal mortality impacts of regu-
lation persist downstream of our defined treatment group. We define
three downstream groups. ‘Near Downstream’ denotes the nearest
group downstream and includes Pratapgarh, Kaushambi, and Allahabad
districts. ‘Intermediate Downstream’ is the next nearest group and
consists of Sant Ravidas Nagar, Mirzapur, and Varanasi districts. ‘Far
Downstream’ collects the remaining 11 Indian districts through which
the Ganga River travels beyond Varanasi. We estimate coefficients on
the interaction between dummies for each of these groups and the post-
ruling dummy. Only the ‘Near Downstream’ coefficient is statistically
significant. In fact, it is significantly larger than the main treatment-
group coefficient (−0.32 vs. −0.20), which may be explained by the
location of Kanpur’s tanneries very near to the downstream district bor-
der. Meanwhile, the lack of impacts beyond Allahabad is not surprising,
because pollution decay and other inputs to water quality should atten-
uate the effect the rulings as we move our focus downstream.

5.3. The impact of Mehta vs. Union of India on river pollution

The Ganga Pollution Cases therefore seem to have had a beneficial
effect on infant health. Did they do so by reducing river pollution?
One necessary condition for this explanation to hold is that the ver-
dict is associated with reduced pollution levels. We test this condition
in our reduced-form DD framework, estimating equation (2). Panel A
of Table 4 reports regression results with our primary pollutant, BOD,
while Panel B shows results for other relevant pollutants.

The BOD results displayed in columns 1–6 uniformly imply a sig-
nificant drop in pollution. Our baseline estimate, shown in column 1
and corresponding to the full time-period of available pollution data,
implies a 53.4 percentage-point drop in the likelihood of exceeding the
bathing class BOD standard after the Supreme Court rulings. Prior to the
ruling, the likelihood of exceedance in treated districts was 100 percent.
The drop in exceedance is consistently observed throughout the post-
verdict period, as shown in columns 2–4. It is also robust to an expan-
sion of the control group to include all of India (column 5). Meanwhile,
downstream impacts in column 6 mirror those from Table 3, column
7: the nearest group of districts downstream of the treatment group is
associated with a large and significant average drop in exceedance of
the water quality standard, and the point estimate monotonically drops
in the next two groups downstream. The evidence thus implies that the

Fig. 5. Biological oxygen demand (BOD).

rulings’ impacts on both water quality and neonatal mortality persist
some distance downstream of the cases’ focus.

In columns 7 and 8, we use the logarithm of the BOD level as our
outcome variable instead of the bathing class dummy. With this specifi-
cation of BOD, and over the full time period (column 7), the rulings are
associated with a marginally significant drop in log-BOD, but the asso-
ciation is smaller and insignificant in the short run. To investigate the
divergent results between a dummy variable and the continuous loga-
rithm form, we graphically examine the distribution of the logarithm
of BOD by time and treatment status. Fig. 5 provides kernel densities
of the residuals from regressing log- BOD on weather controls and dis-
trict and year-month fixed effects. Panel A suggests that the verdicts are
associated with significant, yet non-uniform, drops in BOD levels; the
central peak shifts downwards, but the left tail is relatively unchanged.
In contrast, Panel B illustrates a symmetric tightening of the log-BOD
distribution around the mean. Put together, the two kernel density plots
paint a picture of treatment-group reductions in BOD that are relatively
concentrated in the middle to upper half of the distribution.
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Table 5
Impact of upstream pollution on downstream mortality.

Dependent variable: 1[Died in first month]

OLS Upstream Districts Placebo Districts

(1) (2) (3) (4) (5) (6) (7)

1[BOD > 3] −0.007
(0.010)

1[US BOD > 3] 0.030***
(0.010)

0.020**
(0.009)

0.022***
(0.007)

0.030**
(0.014)

−0.006
(0.009)

0.006
(0.004)

Dependent variable mean 0.067 0.067 0.058 0.067 0.066 0.071 0.057
Upstream definition [75,200] [75,200] [75,200] [0,200] [100,200] N/A N/A
Last sample year 1986–1994 1986–1994 1986–2004 1986–1994 1986–1994 1986–1994 1986–2004
Adj. R-Squared 0.015 0.016 0.010 0.016 0.016 0.012 0.011
N 9603 9603 32,560 13,608 8979 2626 16,891

Notes: An observation is a child-month. The dependent variable in all regressions is a binary variable equaling one if a child died in the first month of life. Column
1 shows the results from OLS estimation of mortality on pollution. Columns 2–5 show results from estimation of equation (3). Columns 6 and 7 show results from
a placebo test, in which the upstream district for each observation is replaced by a different, neighboring district that is not upstream. In each column, the sample
is defined by its listed ‘Upstream definition’, ‘Geographic coverage’, and ‘Last sample year’ (“N/A” indicates no sample restriction based on upstream distance).
All regressions additionally include a set of controls (religion of the household head, caste of the household head, mother’s age, mother’s literacy, local CETP
capacity, air temperature, total precipitation, and NRCP) as well as district and year-month fixed effects. Observations are weighted by survey sampling weights.
Standard errors are clustered at the district level in parentheses. ***, **, and * indicate statistical significance at the 1, 5, and 10 percent, respectively.

Panel B of Table 4 provides estimates of the impact of other pollu-
tants that are relevant to the tanning industry and the Supreme Court
verdicts. Calcium, sulfate, and chloride ions are all by-products of the
tanning process; all drop significantly in the aftermath of the rulings
(columns 1, 2, and 3). FCOLI, meanwhile, is a strong indicator of domes-
tic pollution and thus should be observed to drop if the second of the
two Supreme Court verdicts was successful. We find no evidence of such
a drop (column 4).

5.4. Mechanisms of policy transmission

Having identified a strong link between the Ganga Pollution Cases
and the local health of both infants (Tables 2 and 3) and rivers
(Table 4), we now turn to the questions of how water pollution affects
infant health and what that means for Indian environmental policy.
Our strategy for answering these questions relies on an estimation of
a dose-response function for water pollution and neonatal mortality.
We use the merged sample of water pollution and neonatal mortal-
ity in this phase of analysis, which limits us to the 1986–2004 time
period. To utilize our IV, we must further restrict our geographic focus
to only those districts with non-missing upstream pollution measure-
ments. Appendix Table A2 shows how the pool of available pollution
monitors and their distance from upstream counterparts varies with
our definition of upstream (which is detailed in Section 3). Appendix
Table A3 summarizes the merged sample using our preferred upstream
definition of [75 km, 200 km].13 Finally, Appendix Table A4 repro-
duces the main results of our DiD analysis with the merged sample.

Table 5 establishes a causal relationship between pollution and
infant mortality. Column 1 shows the OLS relationship between BOD
pollution (i.e., exceedance of the bathing-class standard) and neonatal
mortality. It is a statistical zero, which may reflect the upward bias
that would result from positive correlations between pollution, urban-
ization, and economic activity. Columns 2–5 replace the key indepen-
dent variable with its upstream counterpart – the reduced-form analog
of 2SLS with upstream BOD as the instrument. The specifications in
these columns vary only by either sample time period or the definition
of upstream. In stark contrast to the OLS result, the coefficient on
upstream water quality is positive and significant across all four spec-
ifications. The interpretation of these coefficients is that exceeding the

13 The 75-km lower bound minimizes the risk of off-river spatial correlation, while the
200-km upper bound excludes locations that are so far upstream as to not physically
affect downstream pollution levels. We test the robustness of the lower bound in columns
4 and 5 of Table 5 as well as in columns 1–3 and 5–7 of Table A5.

BOD standard for bathing-class water quality upstream increases the
downstream likelihood of neonatal mortality by 2–3 percentage points
– a significant spatial externality.

Our empirical strategy hinges on the assumption that upstream river
pollution is exogenous once we condition on weather, policy, and dis-
trict and year-month fixed effects. Implicit in this assumption is that
these controls fully capture the endogenous location of households. To
bolster this argument, we employ a placebo test that provides additional
evidence supporting our exclusion restriction. In columns 6 and 7, each
upstream district is replaced with the nearest off-river neighbor with
non-missing pollution data. If the resulting ‘falsified’ upstream pollution
variable remains a significant predictor of downstream mortality, then
we are likely capturing spurious, spatial correlation between a given
district and its neighbors due to the regional nature of many health
and environmental shocks. This, however, is not the case: the falsified
upstream pollution variable loses both its magnitude and significance,
thereby suggesting that our true upstream variable is isolating quasi-
random variation in pollution that originates upstream and yet flows
downstream to other districts.

The next step is to estimate the dose-response function and use it to
test the importance of the pollution mechanism. The results of this step
are documented in Table 6, which details the first and second stages
of our 2SLS estimation and the associated over-identification tests. In
columns 1–4, we employ a single instrument – upstream pollution, as
before. Once again, the first three columns pertain to short-, medium-,
and long-run periods of observation, while the fourth uses the full time
period but parameterizes the policy variable as three period-specific
dummies. The first-stage is strong in all four columns.14 In the second
stage, all specifications yield statistically significant point estimates of
the pollution coefficient (in Panel B), which is approximately four to
six times larger in magnitude than its upstream counterpart in Table 5.
The implication is that surpassing the BOD standard of 3 mg/l raises
the risk of neonatal mortality by 10–15 percentage points.

The first four columns of Table 6 also provide some initial evidence
on policy mechanisms. In these columns, the point estimates of the
treatment coefficient in Panel B reveal whether the verdicts remain
predictive of mortality impacts once pollution enters into the equa-
tion directly. In all cases, these point estimates are statistically insignifi-
cant, which strongly suggests that the verdicts acted on health primarily

14 The first stage is also very strong in IV models that replace BOD with sulfates, chlo-
rides, or calcium. These results are available upon request.
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Table 6
Instrumental variables impact of pollution on mortality.

1-IV 2-IV

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. 2SLS first stage
1[US BOD>3] 0.211***

(0.064)
0.167**
(0.065)

0.180**
(0.073)

0.172**
(0.072)

0.211***
(0.064)

0.167**
(0.065)

0.180**
(0.073)

0.172**
(0.072)

1[Kanpur] X 1[Post-Verdict] −0.571***
(0.068)

−0.462***
(0.058)

−0.389***
(0.075)

−0.571***
(0.068)

−0.462***
(0.058)

−0.389***
(0.075)

1[Kanpur] X 1[10/1987 < t < 12/1994] −0.446***
(0.143)

−0.446***
(0.143)

1[Kanpur] X 1[1/1995 < t < 12/1999] −0.353***
(0.102)

−0.353***
(0.102)

1[Kanpur] X 1[1/2000 < t] −0.316*
(0.189)

−0.316*
(0.189)

Panel B. 2SLS second stage
1[BOD > 3] 0.144**

(0.061)
0.126**
(0.054)

0.111***
(0.034)

0.121***
(0.040)

0.090***
(0.020)

0.100***
(0.032)

0.102***
(0.027)

0.107***
(0.025)

1[Kanpur] X 1[Post-Verdict] 0.050
(0.043)

0.018
(0.028)

0.009
(0.019)

Dependent variable mean 0.067 0.61 0.058 0.058 0.067 0.061 0.058 0.058
F-statistic (p-value) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
C-statistic (p-value) 0.348 0.525 0.634 0.469
Sample time period 1986–1994 1986–1999 1986–2004 1986–2004 1986–1994 1986–1999 1986–2004 1986–2004
N 9603 21,703 32,561 32,561 9603 21,703 32,561 32,561

Notes: An observation is a child-month. The dependent variable in all regressions is a binary variable equaling one if a child died in the first month of life. All columns display
results from Two-Stage Least Squares estimation of equations (4) and (5); panel A details 2nd-stage results and panel B details 1st-stage results. In columns 1–4, the endogenous
variable (BOD > 3) is instrumented using its upstream analog (‘1-IV’), while in columns 5–8, both upstream pollution and the policy variable (“1[Kanpur] X 1[Post-Verdict]”)
are used as instruments (‘2-IV’). In 2-IV columns, the listed p-value corresponds to a C-statistic, which tests the null hypothesis that the endogenous variable is overidentified.
All regressions include a set of controls (religion of the household head, caste of the household head, mother’s age, mother’s literacy, local CETP capacity, air temperature, total
precipitation, and NRCP) as well as district and year-month fixed effects. Observations are weighted by survey sampling weights. Standard errors are clustered at the district level
in parentheses. ***, **, and * indicate statistical significance at the 1, 5, and 10 percent, respectively.

through the pollution channel.15 We further test for the role of pollu-
tion in policy impacts by re-estimating the 2SLS model in columns 5–8
with the same parameters as in columns 1–4, respectively, except with
two instruments instead of one. A rejection of the null (i.e., that the
policy instrument is valid) is evidence of either (a) multiple channels
of policy impact or (b) different local average treatment effects being
captured by the two instruments. A failure to reject, on the other hand,
does not formally rule out the existence of other mechanisms, but it
does support the notion that reductions in pollution were central to the
observed declines in mortality.

The results of the over-identification tests are tabulated as p-values
for the associated C-statistic in columns 5–8. These p-values are statis-
tical measures of the difference between the dose-response coefficients
from 1-IV and 2-IV specifications. The naked-eye version of the test is
therefore a pairwise comparison of coefficients on 1[BOD > 3] between
columns 1 and 5, 2 and 6, 3 and 7, and 4 and 8. In all cases, the 2-IV
coefficient is smaller, but some of the deviation is a natural result of
statistical noise.16 The p-value measures the significance of the devia-
tion, and in columns 5–8 it runs from 0.348 to 0.634. That is, in all
cases we fail to reject the null hypothesis that pollution fully explains

15 The three period-specific treatment coefficients are omitted from Panel B, column 4
for table conciseness but are similarly small and insignificant.

16 One back-of-the-envelope method of interpreting our results is to compare the
product of our ‘policy-on-pollution’ and ‘pollution-on-health’ point estimates with our
‘policy-on-health’ point estimate. The relevant results must hold constant the time-period
(1986–2004), geography (Ganga Basin) and upstream range (here, we choose [75,200]).
The reduced form results for this specific sample are in Table A3 (column 1 and column
4) and Table A4 (column 3) respectively. The product of the two coefficients from the
reduced form coefficients is 0.111 * (−0.381) = −0.042. This is larger than, but still
in the range of, the policy-mortality coefficient of −0.034. We stress, however, that the
overidentification test is the statistically correct way to interpret our policy mechanism
results.

the verdicts’ health impact. Appendix Table A5 shows that this finding
is robust to the use of different definitions of upstream pollution and
extending the control group to the entire remainder of India.

6. Discussion

Our estimates of the Ganga Pollution Cases’ sizable environmental
and health impacts are important because they represent the first doc-
umented success in India’s regulation of water quality. In addition, our
findings are differentiated by the type of pollution studied. We pro-
vide the first quasi-experimental evidence of the association between
biochemical oxygen demand and health. Prior work has focused on pol-
lution from either domestic (Field et al., 2011) or agricultural (Brainerd
and Menon, 2014) sources. Our own work links mortality to industrial
pollution for the first time.17 In addition, we have described and imple-
mented a novel, replicable methodology for producing an unbiased esti-
mate of the water pollution-health dose-response function leveraging
the flow of rivers.

Our reduced-form estimate of the relationship between environmen-
tal quality and health mirrors those of Ebenstein (2012) and Brainerd
and Menon (2014) and indicates that the costs of river pollution are sig-
nificant.18 The latter authors’ findings are particularly consistent with
our own results, in that they, too, specifically show neonatal mortality

17 Our identified BOD impacts could, in principle, capture reductions in domestic pollu-
tion, but the absence of impacts on FCOLI – a more direct measure of domestic pollution
– makes that explanation unlikely.

18 Ebenstein (2012) shows that decreases in Chinese river water quality are associated
with rises in adult deaths due to stomach cancer: a one-grade deterioration (from a six-
grade scale) predicts a 10 percent rise in stomach-cancer mortality. Brainerd and Menon
(2014), meanwhile, find that a 10 percent rise in agricultural pollution into India’s rivers
is associated with a 6 percent increase in neonatal mortality.
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to be affected by water pollution in India. Given widespread breast-
feeding practices in India, these results suggest that alternative modes
of contamination other than drinking river water – such as bathing and
person-to-person transmission – are at work (Cifuentes et al., 2000).
Alternatively, pollution exposure in utero may explain our neonatal
mortality estimates. While we have limited ability to investigate the
timing of pollution exposure, our policy analysis suggests that infants
whose gestation periods fall fully after the verdicts have a better prob-
ability of survival.

In spite of the harms of pollution, environmental quality remains
low in many developing countries. Air quality in Delhi, India, for exam-
ple, averaged 128 μg/m3 of fine particulate matter (PM2.5) in 2015 –
ten times more than in Washington D.C (Washington Post, 2016). and
significantly worse than in 2010. In that same five-year period, the num-
ber of classified ‘polluted river stretches’ in India doubled from 150 to
302, and the gap between sewage load and sewage treatment capac-
ity expanded (Daily Mail, 2015). Why, if pollution is so costly, does it
persist at high levels?

One explanation is a high marginal utility of consumption (see
Greenstone and Jack, 2015), which could make the private opportu-
nity cost of pollution reduction greater than the private benefit. In
support of this hypothesis, Hanna and Oliva (2015a) show that when
Indian households are randomly made wealthier (through a cash-and-
livestock transfer), they choose to consume more energy but not cleaner
energy. Relatedly, Greenstone and Hanna (2014) argue that, in India,
air pollution policy has been more effective than water pollution pol-
icy because of relatively greater demand for air quality than for water
quality. In our context, Kanpur Nagar district had BOD levels that
placed it in the 63rd percentile of Ganga Basin water quality prior to
the Supreme Court rulings. Higher pollution levels may, in principle,
be associated with larger willingness-to-pay for environmental qual-
ity, but our qualitative investigations suggest that demand for water
quality was quite low in Kanpur in the 1980s: there was no local
movement to improve water quality at the time of Mehta’s writ peti-
tion, but there was significant concern about the economic impacts
of regulation in a city that relied heavily on the tanning industry for
jobs.19

High marginal costs of abatement and political economic dis-
tortions are two other possible explanations for poor environmen-
tal quality in the developing world. Davis (2008) and Field et al.
(2011), for instance, identify environmental regulations whose designs
had unintended consequences for air quality in Mexico and infant
health in Bangladesh, respectively. Sigman (2002, 2005) and Lipscomb
and Mobarak (2017), meanwhile, document greater water pollution
upstream of administrative borders, where even a public agent may
not fully internalize the social cost of poor water quality. Our IV anal-
ysis underscores this problem by documenting the existence of spa-
tial spillovers in river pollution. It also connects this spatial exter-
nality directly to health outcomes for the first time, by showing that
upstream pollution imparts a mortality burden on downstream com-
munities. River pollution is thus a collective action problem requir-
ing central government regulation and/or inter-jurisdictional bargain-
ing.

Why, then, did the Ganga Pollution Cases succeed where other
Indian government action – such as the ambitious National River
Conservation Plan (NRCP) – failed? One feature that distinguishes

19 We conducted a qualitative research study in Kanpur in the winter of 2014. The
study consisted of interviews of a large number of stakeholders and informants in the
Ganga Pollution Cases. These included government officials, owners of tanneries, two
non-governmental organizations, several journalists, three professors at the Indian Insti-
tute of Technology, an operator of a Common Effluent Treatment Plant (CETP), elderly
rickshaw pullers who worked in Jajmau in the 1980s, and taxi drivers. We examined
official documents from the time that the Ganga Action Plan was implemented and
progress reports in later years. For background on citizen activism, we are grateful to
the Ecofriends organization, which was established in Kanpur in 1993.

the verdicts from the NRCP is that the environmental policy pro-
duced by the former emanated from the judicial branch rather than
the executive. Article 21 of the Indian Constitution provides citi-
zens with the “Right to Life”; Mehta vs. Union of India is a water-
shed moment in Indian legal and environmental history because it
was the first instance in which this constitutional ‘lever’ was used to
drive environmental policy through the Indian Judiciary. It is plausi-
ble that decisions from the judiciary differ from those made by the
executive in that they mandate agents to take specific – and verifi-
able – actions, rather than designing complex investment and incen-
tive schemes that are arguably more difficult to implement (Davis,
2008). Furthermore, the set of stakeholders empowered to monitor
the execution of a judicial decision, which includes citizens, might
reduce the scope for firms to cheat the government’s monitoring sys-
tem (Duflo et al., 2013). Further understanding of what made the
Ganga Pollution Cases successful might therefore shed light on what
types of institutional arrangements lead to successful policy implemen-
tation.

7. Conclusion

This paper provides empirical evidence that the Supreme Court deci-
sions in Mehta vs. Union of India, which primarily targeted the tan-
ning industry in Kanpur district, induced a drop in both river pollu-
tion and neonatal mortality. Our investigation of the mechanisms of
policy indicates that the observed drop in pollution may have played
an important role in explaining the identified mortality effect. In deriv-
ing and conducting our tests of this pollution channel, we show how
information about different potential mechanisms can be backed out
from analysis even when data on all possible mechanisms are not avail-
able.

We believe our analysis represents an important contribution to
the broader puzzle of continually poor environmental quality in devel-
oping countries. First, we have identified a precedent for successful
water pollution policy in India. While one data point cannot iden-
tify the keys to broadly effective environmental policy, the attributes
of the Ganga Pollution Cases and their context – including (but
not limited to) judicial backing, industrial focus, and water quality
improvements rather than behavior change – may inform the design
of successful policy in an area where it has previously proven elu-
sive.

Second, we have demonstrated that river pollution has a real,
adverse impact on infant health in India. This is important because
existing research predominantly focuses on air quality rather than
water quality, and demand for the latter appears correspondingly
lower than demand for the former. Our results highlight the suscep-
tibility of newborns in their first month of life, the harms of indus-
trial pollution, and the association between mortality and the broad-
based measure of biochemical oxygen demand. Methodologically, we
show how the unidirectional flow of rivers can be leveraged for
unbiased estimation of the water pollution-health dose-response func-
tion.

Finally, we have shown that the ultimate incidence of the costs of
pollution is not limited to the origin of that pollution. Rather, water
pollution flows downstream to other communities living along rivers,
reducing not just water quality but also the likelihood of infant sur-
vival. This finding highlights the spatial externality inherent to pollu-
tion and underscores the need for inter-jurisdictional bargaining. All in
all, we provide several pieces of insight into the challenges of design-
ing effective environmental policy in the context of a developing coun-
try.
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A. Appendix tables and figures

Fig. A1. Time trends in the treatment group vs. Kannauj district.
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Fig. A2. Time trends in Kanpur Nagar district vs. the control group.
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Table A1
Pre-Ruling Summary Statistics for All Variables.

Treatment (Kanpur region) Control (Rest of Ganga Basin)

N Mean St. Dev. Min Max N Mean St. Dev. Min Max

Panel A. Child-level variables
1[Child died in the first month of life] 1821 0.12 0.32 0 1 125,931 0.09 0.29 0 1
1[Child died in the first year of life] 1821 0.17 0.38 0 1 125,931 0.13 0.34 0 1
1[Child died in the first year of life | survived first month] 1582 0.06 0.24 0 1 112,623 0.04 0.21 0 1
1[Mother is Hindu] 1821 0.79 0.40 0 1 125,931 0.85 0.36 0 1
1[Scheduled Caste/Scheduled Tribe] 1821 0.25 0.43 0 1 125,931 0.26 0.44 0 1
Age of mother (years) at time of interview 1821 39.54 3.34 28 44 125,931 39.55 3.26 21 44
1[Mother is literate] 1821 0.33 0.47 0 1 125,931 0.30 0.46 0 1

Panel B. District-level variables
Ln(BOD) 22 1.66 0.31 1 2 468 1.09 0.85 −1 3
1[BOD > 3] 22 1.00 0.00 1 1 468 0.46 0.50 0 1
1[FCOLI > 50] 22 1.00 0.00 1 1 411 0.51 0.50 0 1
1[Calc > median] 22 0.86 0.35 0 1 367 0.47 0.50 0 1
1[Sulfates > median] 22 0.91 0.29 0 1 404 0.47 0.50 0 1
1[Chlorine > median] 22 0.50 0.51 0 1 435 0.50 0.50 0 1
Air temperature (degrees C) 22 26.27 5.90 16 35 471 26.33 5.24 11 36
Monthly precipitation (mm) 22 53.11 75.98 0 291 471 95.52 135.10 0 753
1[National River Conservation Plan] 22 1.00 0.00 1 1 471 0.42 0.49 0 1
Common Effluent Treatment Plant capacity (MLD) 22 0.00 0.00 0 0 471 0.00 0.00 0 0

Notes: All statistics are based on pre-Supreme Court verdicts data. In Panel A, an observation is a child. In Panel B, it is a district-month. The sample marked ‘Treatment’ consists of
observations from Kanpur, Unnao, Fatehpur, and Rae Bareli districts. The sample marked ‘Control’ consists of observations from all other districts in the Ganga Basin.

Table A2
Sample Composition and Upstream Definition.

Ganga Basin Only All India

Number of
Monitors

Upstream
Distance (km)

Number of
Monitors

Upstream
Distance (km)

[0, 200] 77 96 343 87
[20, 200] 70 102 333 92
[50, 200] 68 114 315 108
[75, 200] 54 128 278 124
[100, 200] 48 146 255 141
[75, 300] 78 177 328 149

Notes: The window [X,Y] defines the range, in km, of distances at which a pollution monitor
lying upstream of some monitor m qualifies as its upstream match. That match is also condi-
tional on the upstream monitor lying in a different district than monitor m. Tabulated numbers
count the monitors in the sample that have upstream matches, as well as the average distance
upstream of those matches. In the left panel, the sample is the Ganga Basin only; in the right,
it is all of India.

Table A3
Summary Statistics for Variables in the Merged Mortality-Pollution Sample.

Treatment (Kanpur region) Control (Rest of Ganga Basin)

N Mean St. Dev. Min Max N Mean St. Dev. Min Max

1[Child died in the first month of life] 2962 0.06 0.24 0 1 29,599 0.06 0.23 0 1
1[BOD>3] 2962 0.38 0.48 0 1 29,599 0.41 0.49 0 1
Upstream 1[BOD>3] 2962 0.92 0.28 0 1 29,599 0.36 0.48 0 1
1[Child was born after the verdict] 2962 0.95 0.21 0 1 29,599 0.96 0.20 0 1
1[Mother is Hindu] 2962 0.73 0.45 0 1 29,599 0.80 0.40 0 1
1[Scheduled Caste/Scheduled Tribe] 2962 0.26 0.44 0 1 29,599 0.27 0.44 0 1
Age of mother (years) at time of interview 2962 31.27 6.11 16 44 29,599 30.15 6.35 15 44
1[Mother is literate] 2962 0.43 0.49 0 1 29,599 0.37 0.48 0 1
Monthly mean of daily mean airtemp (C) 2962 25.93 5.80 14 35 29,599 25.45 5.69 10 36
Interpolated Precipitation (mm) 2962 73.21 98.83 0 406 29,599 85.46 121.67 0 742
1[National River Conservation Plan] 2962 0.53 0.50 0 1 29,599 0.49 0.50 0 1
Common Effluent Treatment Plant capacity (MLD) 2962 0.00 0.00 0 0 29,599 0.23 1.18 0 6

Notes: The sample includes all child-months with non-missing values of the variables listed, which are those required for IV estimation. The upstream buffer used is [75 km,
200 km]. “N” lists the number of child-month observations. The sample marked ‘Treatment’ consists of observations from Kanpur, Unnao, and Rae Bareli districts. The sample
marked ‘Control’ consists of observations from all other districts in the Ganga Basin.
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Table A4
Policy Impact Regressions with Merged Mortality-Pollution Sample.

NM NM NM 1[BOD > 3] 1[BOD > 3] 1[BOD > 3]

(1) (2) (3) (4) (5) (6)

1[Kanpur] X 1[Post-Verdict] −0.033**
(0.013)

−0.040***
(0.013)

−0.034**
(0.014)

−0.381***
(0.076)

−0.455***
(0.059)

−0.587***
(0.071)

Dependent variable mean 0.058 0.061 0.067 0.408 0.391 0.367
Sample Time Frame 1986–2004 1986–1999 1986–1994 1986–2004 1986–1999 1986–1994
Adj. R-Squared 0.009 0.013 0.015 0.681 0.646 0.686
N 32,560 21,703 9603 32,560 21,703 9603

Notes: The sample includes all child-months with non-missing values for neonatal survival, BOD, and upstream BOD (with ‘upstream’ defined
as being in the range [75 km, 200 km]). Columns 1–3 correspond to estimation of equation (1), with a binary dependent variable equaling one
if a child died in the first month of life. Columns 4–6 correspond to estimation of equation (2), with a binary dependent variable equaling one
if district-average BOD exceeds 3 mg/l in a given month. All regressions include a set of controls (religion of the household head, caste of the
household head, mother’s age, mother’s literacy, CETP capacity, air temperature, total precipitation, and NRCP dummy) and district and year-
month fixed effects. Observations are wThe ed by survey sampling weights. Standard errors are clustered at the district level in parentheses.
***, **, and * indicate statistical significance at the 1, 5, and 10 percent levels, respectively.

Table A5
Robustness Checks on Instrumental Variables Regressions.

1-IV 2-IV

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. 2SLS first stage
1[US BOD > 3] 0.169***

(0.063)
0.213***
(0.062)

0.207**
(0.093)

0.275***
(0.039)

0.169***
(0.063)

0.213***
(0.062)

0.207**
(0.093)

0.275***
(0.039)

1[Kanpur] X 1[Post-Verdict] −0.561***
(0.072)

−0.604***
(0.061)

−0.459***
(0.092)

−0.674***
(0.039)

−0.561***
(0.072)

−0.604***
(0.061)

−0.459***
(0.092)

−0.674***
(0.039)

Panel B. 2SLS second stage
1[BOD>3] 0.154**

(0.062)
0.110**
(0.044)

0.137
(0.085)

0.028
(0.020)

0.096***
(0.027)

0.074***
(0.018)

0.139***
(0.034)

0.035*
(0.019)

1[Kanpur] X 1[Post-Verdict] 0.054
(0.042)

0.035
(0.034)

−0.001
(0.043)

−0.031**
(0.015)

Dependent variable mean 0.065 0.066 0.067 0.053 0.065 0.066 0.067 0.053
F-statistic (p-value) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
C-statistic (p-value) 0.259 0.393 0.978 0.214
Upstream Range (km) [20,200] [50,200] [100,200] [75,200] [20,200] [50,200] [50,200] [75,200]
Geographic coverage Ganga Ganga Ganga India Ganga Ganga Ganga India
N 13,309 11,573 8509 60,511 13,309 11,573 8509 60,511

Notes: An observation is a child-month. The dependent variable in all regressions is a binary variable equaling one if a child died in the first month of life. All
columns display results from Two-Stage Least Squares estimation of equations (4) and (5); panel A details 2nd-stage results and panel B details 1st-stage results.
In columns 1–4, the endogenous variable (BOD > 3) is instrumented using its upstream analog (‘1-IV’), while in columns 5–8, both upstream pollution and the
policy variable (“1[Kanpur] X 1[Post-Verdict]”) are used as instruments (‘2-IV’). In 2-IV columns, the listed P-value corresponds to a C-statistic, which tests the
null hypothesis that the endogenous variable is overidentified. All regressions include a set of controls (religion of the household head, caste of the household
head, mother’s age, mother’s literacy, local CETP capacity, air temperature, total precipitation, and NRCP) as well as district and year-month fixed effects.
Observations are weighted by survey sampling weights. Standard errors are clustered at the district level in parentheses. ***, **, and * indicate statistical
significance at the 1, 5, and 10 percent, respectively.

B. A model to test the mechanisms of impact

We derive a statistical test of the mechanisms of policy impact by leveraging two potential instruments for river pollution: (1) upstream river
pollution, and (2) the policy itself. We begin by reprinting equation (1).

Mortalityidt = a + bTdt + Xidt𝛾 + eidt (A.1)

In this reduced-form model of infant mortality, identification rests on the assumption that Cov (Tdt , eidt) = 0 – i.e., that the policy variable is
uncorrelated with all unobserved predictors of neonatal mortality. If this zero-covariance assumption holds, b represents the net causal effect of
policy on neonatal mortality, aggregated across all channels of impact.

To gauge the relative importance of the various channels, we parsimoniously model the structural determinants of mortality rates as follows:

Mortalityidt = 𝛼 + 𝛽Pollutiondt + X̃idt𝛾 + (Zidt𝛿 + 𝜀idt) (A.2)

This equation is analogous to equation (5) in the main text, except that it partitions the space of unobserved risk factors into two: Zidt and
𝜀idt . The former is a vector of all factors that are also correlated with environmental policy Tdt . These include, but are not restricted to, individual
awareness about river water contamination, changes in factor prices stemming from the implementation of environmental policy Tdt , or any type
of private or public interventions that might have been triggered by Tdt . The latter captures the other risk factors of infant mortality and is, by
construction, such that Cov

(
Tdt , 𝜀idt ∣ X̃idt

)
= 0.
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Our next step is to parameterize the relationship between policy and the structural determinants of health (i.e., the right-hand side of equation
(A.2)). We assume that Zidt and Pollutiondt respond to environmental policy and other determinants in linear fashion. That is,

Zidt = 𝛼1 + 𝛽1Tdt + X̃idt𝛾
1 + 𝜀1

idt (A.3)

and
Pollutiondt = 𝛼2 + 𝛽2Tdt + X̃idt𝛾

2 + 𝜀2
idt (A.4)

We can then rewrite equation (A.2) by substituting for both Zidt and Pollutiondt, so as to decompose the policy’s effect on mortality into the different
channels of impact:

Mortalityidt =
[
𝛼 + 𝛽𝛼2 + 𝛼1𝛿

]
+
[
𝛽𝛽2 + 𝛽1𝛿

]
Tdt

+ X̃idt
[
𝛽𝛾2 + 𝛾 + 𝛾1𝛿

]
+
[
𝛽𝜀2

idt + 𝜀1
idt𝛿 + 𝜀idt

]
(A.5)

The total impact of environmental policy Tdt on infant mortality (equal to b in reduced form) is here given by
[
𝛽𝛽2 + 𝛽1𝛿

]
. The first term (𝛽𝛽2)

measures the contribution of the pollution channel, and the second (𝛽1𝛿) aggregates all other channels; the challenge is to estimate each of these
terms separately.

We estimate 𝛽2 from equation (2). The remaining components of the policy-mortality relationship are obtained from equation (A.2), by substi-
tuting the right-hand side of equation (A.3) in for the unobservable Zidt . This yields

Mortalityidt =
[
𝛼 + 𝛼1𝛿

]
+ 𝛽Pollutiondt + X̃idt

[
𝛾 + 𝛾1𝛿

]
+
[
𝛽1𝛿

]
Tdt +

(
𝜀1

idt𝛿 + 𝜀idt
)

(A.6)

which contains both 𝛽 and the product 𝛽1𝛿. We estimate equation (A.6) using 2SLS, where we instrument for Pollutiondt with its upstream analog,
Pollutionu

dt. With unbiased estimates of both 𝛽 and 𝛽1𝛿, we can then test H0 ∶ 𝛽1𝛿 = 0, the null hypothesis that non-pollution channels of policy
impact are inactive.

Note that under this null hypothesis, equation (A.6) can be rewritten

Mortalityidt =
[
𝛼 + 𝛼1𝛿

]
+ 𝛽Pollutiondt + X̃idt

[
𝛾 + 𝛾1 · 𝛿

]
+
(
𝜀1

idt𝛿 + 𝜀idt
)

(A.7)

so that Tdt is additionally excluded from second-stage equation (A.7) and becomes another valid instrument for Pollutiondt. One test of H0 is therefore
an over-identification test that assesses the orthogonality condition for Tdt , as part of the larger set of instruments

{
Tdt ,Pollutionu

dt

}
. To implement

such a test, we construct a C-statistic (see, e.g., Eichenbaum et al., 1988), which we describe further in the main text.
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