
Online Appendix for Hausman and Stolper,
“Inequality, Information Failures, and Air Pollution”

In Appendix Section A1, we present the figures and table referenced in the Background

section of the paper. In Section A2, we provide an overview of exponential pollution decay,

which motivates our theoretical analysis in the main paper. In Section A3, we provide

derivations and proofs for the models in the paper. Finally, in Section A4, we present

three descriptive empirical exercises that document the likelihood of disproportionate hidden

pollution exposure.
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A1 Reporting and Standards Have Become Stricter

Over Time

Figure A1: Air Pollution Guidelines Have Become Tighter

Note: This figure plots the changes in EPA standards and WHO guidelines for selected
air pollutants. The left axis is used for all pollutants except lead and the EPA’s ozone
standard, which use the right axis. Some guidelines use the midpoint of a range; see
Appendix Table A1 for the full range. For time frames (e.g., 8-hour standards versus
annual average standards), also see Appendix Table A1. This figure plots only those
standards and guidelines that have changed over time; for information on standards that
have not changed, see original sources: WHO (2000, 2005, 2010, 2017); EPA (2018).
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Table A1: Air Pollution Guidelines and Standards

Year Pollutant Standard Value

1987 Carbon monoxide 1 hour, mg/m3, WHO 30
2000 Carbon monoxide 1 hour, mg/m3, WHO 30
2010 Carbon monoxide 1 hour, mg/m3, WHO* 35

1987 Lead 1 year, µg/m3, WHO 0.5-1.0
2000 Lead 1 year, µg/m3, WHO* 0.5

1978 Lead 3 month, µg/m3, EPA 1.5
2009 Lead 3 month, µg/m3, EPA* 0.15

1987 Nitrogen dioxide 1 hour, µg/m3, WHO 400
2000 Nitrogen dioxide 1 hour, µg/m3, WHO* 200
2005 Nitrogen dioxide 1 hour, µg/m3, WHO 200
2010 Nitrogen dioxide 1 hour, µg/m3, WHO 200

1987 Ozone 8 hours, µg/m3, WHO 100-120
2000 Ozone 8 hours, µg/m3, WHO* 120
2005 Ozone 8 hours, µg/m3, WHO* 100

1997 Ozone 8 hours, ppm, EPA 0.08
2008 Ozone 8 hours, ppm, EPA* 0.075
2015 Ozone 8 hours, ppm, EPA* 0.07

2006 PM2.5 annual, µg/m3, EPA 15
2012 PM2.5 annual, µg/m3, EPA* 12

1987 Sulfur dioxide 24 hours, µg/m3, WHO 125
2000 Sulfur dioxide 24 hours, µg/m3, WHO 125
2005 Sulfur dioxide 24 hours, µg/m3, WHO* 20

Notes: This table shows changes in EPA standards and WHO guidelines for selected air pol-
lutants. We show all EPA standards that changed. We show WHO guidelines only for those
pollutants for which the EPA has a standard and for which the WHO guideline changed.
Sources are the WHO (2000, 2005, 2005, 2010, 2017); EPA (2018). Guidelines for less com-
monly monitored pollutants (e.g. cadmium, dichloromethane) are in the WHO reports.
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Figure A2: Toxic Chemicals Reporting Has Grown Stricter

Note: This figure plots the count of Toxics Release Inventory- (TRI-) listed chemi-
cals over time. The TRI program is an EPA-run mandatory reporting program for
chemicals with cancer effects, other chronic health effects, significant acute health
effects, and significant environmental effects. The source is EPA (2017).
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A2 Exponential Decay of Pollution with Distance

Our theoretical exercise in the main paper models the air quality – distance relationship using

a linearization of exponential pollution decay. Figure A3 shows a typical pollution decay

function, in which ambient pollution concentration C is a function of distance x: C(x) =

α+ β exp(−x/k), where “the urban background parameter α represents concentrations far-

from-highway..., the near-road parameter β represents the concentration increment resulting

from proximity to the highway, and the decay parameter k governs the spatial scale over

which concentrations relax to α” (Apte et al., 2017, p 7004). This particular quote is from

research on roadways, but note that similar decay has been found for other sources.

Figure A3: Exponential Decay of Pollution

Note: This figure plots the function C(x) = α + β exp(−x/k) for two levels of β: low
β0 and high β1. Pollution is higher in β, and especially higher at small distances; put
differently, air quality is lower in β, and especially lower at small distances.

We can re-write air quality q, i.e., the absence of pollution, as q(x) = α̃ − β exp(−x/k).

With this type of pollution dissipation, the effect of the near-source parameter β declines with

distance x. Formally, note that ∂q
∂β
< 0 and ∂q

∂x
> 0; air quality decreases with the near-source

parameter and increases with distance, respectively. Furthermore, ∂2q
∂x∂β

> 0; the marginal

effect of distance on air quality rises in β. An alternative interpretation is that the negative

impact of β gets closer to zero as distance increases. For intuition regarding the partial

derivatives, consider the case where firms are hiding their emissions, i.e., are misleading

the public about the magnitude of the parameter β. Then, air quality everywhere is worse

than the public believes (since ∂q
∂β
< 0) and air quality is especially worse close to the firm
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( ∂2q
∂x∂β

> 0).

The parameterization of q(x) that we use in the main paper is the result of a Taylor

expansion of q(x) = α̃ − β exp(−x/k). The three derivatives of interest described above for

exponential decay all retain the same sign after linearization.
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A3 Theoretical Derivations

A3.1 Derivation of Demand Functions, Simplified Model

In one of the demand models in the main paper, we assume that utility is Cobb-Douglas in

two goods, q and y: U(q, y) = qγy1−γ. The first good, q, is unobserved healthiness. It is a

function of observable distance x to a point source: q = α0 − α1β + βx. When households

are fully informed, they know the true α0, α1, and β parameters. Under limited information,

they misperceive the β parameter. The second good, y, is the other (i.e., numeraire) good,

unrelated to distance x to the point source.

The individual has the following maximization problem:

max
x,y

U(q(x), y) s.t. px+ y = m

The first-order conditions that define the optimal bundle (λ∗, x∗, y∗) are as follows:

m− px− y = 0

γqγ−1y1−γ ∂q
∗

∂x∗
− λp = 0

(1− γ)qγy−γ − λ = 0

Taking the second and third conditions above, we rearrange them so that the terms con-

taining λ are on the right-hand side. We then divide the second condition by the third and

rearrange terms to obtain
q∗

y∗
=

1

p
· γ

1− γ
· ∂q

∗

∂x∗

Note that we can express q∗ as a function of x∗, and that ∂q∗

∂x∗
= β. Substituting for y∗

using the first first-order condition, we find the optimal, full-information choice of distance:

x∗ =
γm

p
− (1− γ)(α0 − α1β)

β

Subbing this back into q(x) yields

q∗ = α0 − α1β + β
γm

p
+
β(γ − 1)(α0 − α1β)

β

Substituting x∗ into the budget constraint, we can also solve for y∗:

y∗ = (1− γ)m+
p(1− γ)(α0 − α1β)

β
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To determine the sign of ∂q∗

∂m
, we can differentiate the equation for x∗ with respect to m and

the equation for q∗ with respect to x∗ (alternatively, we could differentiate q∗ directly with

respect to m):
∂q∗

∂m
=
∂q∗

∂x∗
∂x∗

∂m
=
γ

p
β > 0

To check that we are at an interior solution, we calculate the bordered Hessian:

D2L(λ, x, y) =

 0 −p −1

−p γ(γ − 1)qγ−2y1−γβ2 γ(1− γ)qγ−1y−γβ

−1 (1− γ)γqγ−1y−γβ (1− γ)(−γ)qγy−γ−1


The determinant of this is:

det
(
D2L(λ, x, y)

)
= p2(1− γ)γqγy−γ−1 + 2pγ(1− γ)qγ−1y−γβ + γ(1− γ)qγ−2y1−γβ2

Each is these three terms is positive, so the second order conditions are satisfied, and we are

at an interior solution.
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A3.2 Proof: Low-Income Households Experience A Greater Amount

of Hidden Pollution, Simplified Model

The household chooses x(β0) believing that air quality is a function of distance x and the

exogenous parameter β0. However, true air quality is a function of the exogenous parameter

β1. As such, we have the following expression for the level of pollution the household believes

it experiences:

q(x(β0), β0) = α0 − α1β0 + β0(x(β0))

In contrast, the level of pollution the household actually experiences is

q(x(β0), β1) = α0 − α1β1 + β1(x(β0))

The difference between these is

q(x(β0), β1)− q(x(β0), β0) = −α1(β1 − β0) + (x(β0))(β1 − β0) = (x(β0)− α1)(β1 − β0)

The first term, (x(β0) − α1), is negative (see footnote in the main text). The second term,

(β1 − β0), is positive. The full difference is therefore negative: the household experiences

worse air quality than it believes.

The derivative of this difference with respect to income is:

d(q(x(β0), β1)− q(x(β0), β0))

dm
= (β1 − β0)

γ

p
> 0

Thus, every household experiences worse air quality than it believes, but the magnitude of

this experienced air quality deficit drops in income. In other words, low-income households

experience more “hidden pollution.”
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A3.3 Proof: Low-Income Households Experience A Greater Util-

ity Loss, Simplified Model

We wish to compare utility at the optimum – that is, when the household is fully informed

and therefore selects the bundle (q∗, y∗) – with the utility experienced when the household

misperceives pollution exposure and selects the bundle (q†, y†):

∆U =
(
(q∗)γ(y∗)1−γ)− ((q†)γ(y†)1−γ)

First, we re-write this as:

∆U =

(
q∗

y∗

)γ
y∗ −

(
q†

y†

)γ
y†

We then take the total derivative with respect to income:

d∆U

dm
= γ

(
q∗

y∗

)γ−1 ∂
(
q∗

y∗

)
∂m

y∗ +

(
q∗

y∗

)γ
∂y∗

∂m
− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂m

y† −
(
q†

y†

)γ
∂y†

∂m

The first term in the d∆U
dm

expression drops out, because q∗

y∗
does not depend on income m (see

its expression in Appendix Section A3.1). Note, however, that the third term remains; the

equation for q∗

y∗
does not apply to q†

y†
because the bundle (q†, y†) is away from the optimum.

To make further progress in signing d∆U
dm

, the following partial derivatives are useful:1

∂y∗

∂m
=
∂y†

∂m
= 1− γ

∂q†

∂m
=
β1γ

p

We differentiate ( q
†

y†
) with respect to m and find:

∂
(
q†

y†

)
∂m

= −q†(y†)−2∂y
†

∂m
+ (y†)−1 ∂q

†

∂m

= −q
†

y†
· 1

y†
· (1− γ) +

1

y†
· β1γ

p

=
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p

)
1The derivative ∂q†

∂m depends on β1 because q† refers to experienced air quality, q(x†(β0), β1) = α0 −
α1β1 + β1

(
γm
p −

(1−γ)(α0−α1β0)
β0

)
.

A-10



Substituting these in and re-arranging, we have:

d∆U

dm
=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂m

y†

=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p

)
y†

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
+ γ(1− γ)

(
q†

y†

)γ
− γ2β1

p

(
q†

y†

)γ−1

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ2β1

p

(
q†

y†

)γ−1

From the FOCs, we have that β1
γ

1−γ
1
p

= q∗

y∗
, so:

d∆U

dm
= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ(1− γ)

(
q∗

y∗

)(
q†

y†

)γ−1

= (1− γ)

((
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
− γ

(
q∗

y∗

)(
q†

y†

)γ−1
)

= (1− γ)

((
q∗

y∗

)γ
−
(
q∗

y∗

)γ (
(1− γ)Rγ + γRγ−1

))

where R = (q†/y†)
(q∗/y∗)

< 1, since q† < q∗ and y† > y∗.

Our remaining task is to evaluate whether ((1− γ)Rγ + γRγ−1) is greater than or less

than 1. To do so, first consider the situation in which R = 1. Then

(
(1− γ)Rγ + γRγ−1

)
= 1− γ + γ = 1

In our setting, 0 < R < 1. To find whether ((1− γ)Rγ + γRγ−1) is greater than or less than

1, we calculate its derivate with respect to R:

d [(1− γ)Rγ + γRγ−1]

dR
= γ (1− γ)Rγ−1 + γ (γ − 1)Rγ−2

= γ (1− γ)Rγ−1 − γ (1− γ)Rγ−2

= γ (1− γ)
(
Rγ−1 −Rγ−2

)
This derivative is negative: both γ and 1−γ are positive, but the third term is negative. Thus,

((1− γ)Rγ + γRγ−1) > 1 when R < 1. In turn,
((

q∗

y∗

)γ
−
(
q∗

y∗

)γ
((1− γ)Rγ + γRγ−1)

)
< 0,

which ensures that d∆U
dm

< 0.
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A3.4 Proof: Low-Income Households Experience A Greater Change

in Consumer Surplus, Simplified Model

We argue in the main text that one could evaluate whether the change in consumer surplus

from having full information is increasing or decreasing in income. Frequently the researcher

does not observe the full utility function, but is able to estimate demand and thus consumer

surplus. It is easiest to evaluate consumer surplus in our simplified Cobb-Douglas model

by considering the demand for distance x from the point source. The consumer surplus

gain associated with full information can be evaluated as the area under the full-information

inverse demand curve over the range (x∗(p), x†(p)), minus the change in expenditure, as in

the “Consumer Surplus” figure in the main text. The outer grey demand curve comes from

the true underlying utility function and thus is the appropriate demand curve to use for

evaluating consumer surplus.

To derive an analytic expression for this change in consumer surplus using the model

we present in the main text, we take the integral under the inverse demand expression and

subtract off the change in expenditure, as follows:

∆CS =

(∫ p∗(x†)

p∗(x∗)

γm

p
− (1− γ)(α0 − α1β1)

β1

dp

)
−
(
p∗(x†)− p∗(x∗)

)
· x†,

where p∗(x∗) denotes the actual market price of distance x and p∗(x†) denotes the implicit

price that would have yielded x† in the full information case. This is equal to:

∆CS =γm ln (p∗(x†))− (1− γ)(α0 − α1β1)

β1

· (p∗(x†))

− γm ln (p∗(x∗)) +
(1− γ)(α0 − α1β1)

β1

· (p∗(x∗))

−
(
p∗(x†)− p∗(x∗)

)
· x†

We are interested in how the change in consumer surplus that would result from full

information varies with income, so we take the derivative of ∆CS with respect to income:

∂∆CS

∂m
=
γm

p†
∂p†

∂m
+ γ ln p† − (1− γ)(α0 − α1β1)

β1

∂p†

∂m

− γm

p∗
∂p∗

∂m
− γ ln p∗ +

(1− γ)(α0 − α1β1)

β1

∂p∗

∂m

− ∂x†

∂m
(p† − p∗)− x†

(
∂p†

∂m
− ∂p∗

∂m

)
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Noting that the true price p does not change with income, this simplifies to:

∂∆CS

∂m
=
γm

p†
∂p†

∂m
+ γ ln p† − (1− γ)(α0 − α1β1)

β1

∂p†

∂m

− γ ln p∗ − ∂x†

∂m
(p† − p∗)− x†

(
∂p†

∂m

)
Re-arrange to:

∂∆CS

∂m
= γ(ln p† − ln p∗) + (p∗ − p†)∂x

†

∂m

+

(
γm

p†
− (1− γ)(α0 − α1β1)

β1

− x†
)
∂p†

∂m

Recall that ∂x†

∂m
= γ

p
, so:

∂∆CS

∂m
= γ(ln p† − ln p∗) + (p∗ − p†) γ

p∗

+

(
γm

p†
− (1− γ)(α0 − α1β1)

β1

− x†
)
∂p†

∂m

Next, note that p† is the price that yields x† along the true demand curve, i.e., x† = (γm
p†
−

(1−γ)(α0−α1β1)
β1

). Therefore the last term in the ∂∆CS
∂m

expression drops out, and we are left

with:
∂∆CS

∂m
= γ(ln p† − ln p∗) + (p∗ − p†) γ

p∗

Recall that p† > p∗, so (ln p† − ln p∗) is positive whereas p∗−p†
p∗

is negative. However, (ln p† −
ln p∗) is smaller in absolute value,2 leaving the entire expression γ(ln p†− ln p∗) + (p∗− p†) γ

p∗

negative.

Then ∂∆CS
∂m

is negative, so EJ Metric 3 holds for Cobb-Douglas preferences with linear

dissipation and linear pricing.

2Denote r = p†

p∗ . Then we are evaluating simply r − 1 compared to ln r. Since r − 1 > ln r, we have

that (p†−p∗)
p∗ > ln p† − ln p∗. Note it is easy to see graphically that r − 1 > ln r. More formally, note that

ln r = r − 1 for r = 1. Then note that d(ln r)
dr < d(r−1)

dr for all r > 1, implying that ln r < r − 1 for all r > 1.

Also, d(ln r)
dr > d(r−1)

dr for all r < 1, implying that ln r < r − 1 for all r < 1. Therefore ln r ≤ r − 1 for all r.
In the case we are considering, p† 6= p∗, so the inequality is strict.
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A3.5 Proof: Implicit Counterfactual Price is Decreasing in In-

come

In the main text, we discuss how low-income households experience a greater change in

consumer surplus in the simplified model (Cobb-Douglas preferences, linear dissipation, fixed

prices). Appendix Section A3.4 gives a formal proof. The main text simply gives intuition,

and that intuition relies on the height of the consumer surplus triangle in the main text’s

figure. Specifically, we rely on the fact that p† (the price that would have yielded the

uninformed quantity x† in the full information case) decreases with income m. In this

Appendix, we prove mathematically that ∂p†

∂m
< 0.

First, define p† to be the price that would yield x† along the full information demand

curve:

x† =
γm

p†
− (1− γ)(α0 − α1β1)

β1

And recall that the uninformed demand curve for x† as a function of the true price p is given

by:

x† =
γm

p
− (1− γ)(α0 − α1β0)

β0

Therefore by substitution:

γm

p
− (1− γ)(α0 − α1β0)

β0

=
γm

p†
− (1− γ)(α0 − α1β1)

β1

Rearranging:
1

p†
=

1

p
− (1− γ)(α0 − α1β0)

β0γm
+

(1− γ)(α0 − α1β1)

β1γm

Simplifying:
1

p†
=

1

p
+

(1− γ)α0(β0 − β1)

β0β1γ

1

m

Re-write this as:
1

p†
= A+

B

m
=
Am+B

m
=⇒ p† =

m

Am+B

where A = 1
p
> 0 and B = (1−γ)α0(β0−β1)

β0β1γ
. Recall that β0 < β1, so B = (1−γ)α0(β0−β1)

β0β1γ
< 0.

Taking the partial derivative:

∂p†

∂m
=

B

(Am+B)2
< 0

The derivative of p† with respect to income is negative.
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A3.6 Equilibrium under Pure Exchange with Continuous Choice

of Distance

Here we maintain the modeling assumptions from the main text but allow the price of

distance to vary endogenously. Specifically, we now consider a pure exchange economy with

two individuals. We assume a fixed total supply of distance X to be divided up between

the two individuals in a continuous manner. While this clearly does not map directly into a

real-world housing scenario, it can help ground intuition about how prices might behave in

general equilibrium and what that might imply for the Cobb-Douglas scenario given above.

The numeraire good also has fixed total supply (Y ). We continue to assume that the

two individuals have identical preferences and access to information and differ only in their

initial endowments. We also continue to assume that pollution decay can be approximated

with a linear functional form. Finally, we maintain our assumption that preferences are

Cobb-Douglas.

Recall that this implies that individual i’s demand for distance is given by:

xi =
γmi

p
− (1− γ)(α0 − α1β)

β

where m is income (i.e., the value of the initial allocation), p is the price of good x, the

numeraire good y has a price of 1, γ is the Cobb-Douglas parameter, and the exogenous

parameters (α0, α1, β) relate distance x to air quality q.

As such, EJ Metric 1 again holds: distance is increasing in m, and since air quality

increases with distance, whoever has the greater value of the initial allocation obtains better

air quality in equilibrium. Thus EJ Metric 1 holds simply because air quality is a normal

good. Furthermore, since the wedge between true and perceved air quality is decreasing in

distance (because of the pollution dissipation process), EJ Metric 2 again holds.

To check whether EJ Metric 3 holds, we must evaluate utility for each individual in

the limited-information equilibrium versus in the full-information equilibrium. Suppose that

individual 1 begins with initial allocation (x0
1, y

0
1) and individual 2 begins with initial alloca-

tion (x0
2, y

0
2). Denote the equilibrium bundles under limited information (x†1, y

†
1) and (x†2, y

†
2).

Under limited information, the β parameter is believed by all agents to be at level β0 (in

reality, it is at level β1 > β0). In equilibrium, p† is such that total demand across the two

consumers is equal to total supply:

x†1 + x†2 = x0
1 + x0

2

y†1 + y†2 = y0
1 + y0

2
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Substituting in the expressions for xi and mi, we have:

γ(x0
1p
† + y0

1)

p†
− (1− γ)(α0 − α1β0)

β0

+
γ(x0

2p
† + y0

2)

p†
− (1− γ)(α0 − α1β0)

β0

= x0
1 + x0

2

Re-arranging to solve for the equilibrium price p† under limited information:

p† =
γ(y0

1 + y0
2)

(1− γ)(x0
1 + x0

2) + 2
(

(1−γ)(α0−α1β0)
β0

)
Denote equilibrium price in the full information scenario as p∗, given by:

p∗ =
γ(y0

1 + y0
2)

(1− γ)(x0
1 + x0

2) + 2
(

(1−γ)(α0−α1β1)
β1

)
We wish to compare utility at the optimum – that is, when the household is fully informed

and therefore selects the bundle (q∗, y∗) – with the utility experienced when household

misperceives pollution exposure and selects the bundle (q†, y†):

∆U =
(
(q∗)γ(y∗)1−γ)− ((q†)γ(y†)1−γ)

This expression is identical to the one in Appendix Section A3.3, but note that now the two

bundles (q∗, y∗) and (q†, y†) are at different equilibrium prices p∗ and p†. We re-write this as:

∆U =

(
q∗

y∗

)γ
y∗ −

(
q†

y†

)γ
y†

We want to evaluate whether this is change in utility is larger for low-income or high-income

individuals. To do so, we take the derivative with respect to the initial endowment of

the numeraire good y, holding constant the total supply of that good, Y = y0
1 + y0

2. We

define “low-income” and “high-income” this way so as to separate out effects of the initial

endowment as opposed to the impact of information on total wealth (which would include

the price effects of the initial endowment). Taking the total derivative with respect to y0:

d∆U

dy0
= γ

(
q∗

y∗

)γ−1 ∂
(
q∗

y∗

)
∂y0

y∗ +

(
q∗

y∗

)γ
∂y∗

∂y0
− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂y0

y† −
(
q†

y†

)γ
∂y†

∂y0

The first term in the d∆U
dy0

expression drops out, because q∗

y∗
does not depend on the individual’s

initial endowment y0 (see its expression in Section A3.1). Note, however, that the third term

remains; the equation for q∗

y∗
does not apply to q†

y†
because the bundle (q†, y†) is away from
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the optimum.3

To make further progress in signing d∆U
dy0

, the following partial derivatives are useful:4

∂y∗

∂y0
=
∂y†

∂y0
= 1− γ

∂q†

∂y0
=
β1γ

p†

We differentiate ( q
†

y†
) with respect to y0 and find:

∂
(
q†

y†

)
∂y0

= −q†(y†)−2 ∂y
†

∂y0
+ (y†)−1 ∂q

†

∂y0

= −q
†

y†
· 1

y†
· (1− γ) +

1

y†
· β1γ

p†

=
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p†

)
This expression is identical to the one in Section A3.3, but where the equilibrium price is

equal to p†. Substituting these in and re-arranging, we have:

d∆U

dy0
=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1 ∂
(
q†

y†

)
∂y0

i

y†

=

((
q∗

y∗

)γ
−
(
q†

y†

)γ)
(1− γ)− γ

(
q†

y†

)γ−1
1

y†

(
−
(
q†

y†

)
(1− γ) +

β1γ

p†

)
y†

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
+ γ(1− γ)

(
q†

y†

)γ
− γ2β1

p†

(
q†

y†

)γ−1

= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ2β1

p†

(
q†

y†

)γ−1

From the FOCs, we have that q∗

y∗
= β1

γ
1−γ

1
p∗

. Rearranging, γ(1 − γ)p
∗

p†
q∗

y∗
= β1γ

2 1
p†

(this

is different from the expression in Section A3.3, for which p was constant and the expression

3Recall that here q† refers to experienced rather than perceived q.
4The derivative ∂q†

∂y0 depends on β1 because q† refers to experienced air quality, q(x†(β0), β1) = α0 −

α1β1 + β1

(
γy0

p −
(1−γ)(α0−α1β0)

β0

)
.
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simplified). Substituting it in, we have:

d∆U

dy0
= (1− γ)

(
q∗

y∗

)γ
− (1− γ)2

(
q†

y†

)γ
− γ(1− γ)

(
p∗

p†

)(
q∗

y∗

)(
q†

y†

)γ−1

= (1− γ)

((
q∗

y∗

)γ
− (1− γ)

(
q†

y†

)γ
− γ

(
p∗

p†

)(
q∗

y∗

)(
q†

y†

)γ−1
)

= (1− γ)

((
q∗

y∗

)γ
−
(
q∗

y∗

)γ (
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

))

where R = (q†/y†)
(q∗/y∗)

. This is similar to the expression in Section A3.3, but with the new term(
p∗

p†

)
.

Our task is to evaluate whether the expression
(

(1− γ)Rγ + γ
(
p∗

p†

)
Rγ−1

)
is greater

than or less than one, because this will tell us the sign of d∆U
dy0

. The proof that follows is

similar to the one in Section A3.3, but with a few extra details that were not necessary in

the simplified case where the price is exogenous.

Consider the case where R = p∗

p†
. Then the expression

(
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

)
sim-

plifies to Rγ. Note that p∗

p†
> 1. Mathematically,

p∗

p†
=

 γ(y0
1 + y0

2)

(1− γ)(x0
1 + x0

2) + 2
(

(1−γ)(α0−α1β1)
β1

)
(1− γ)(x0

1 + x0
2) + 2

(
(1−γ)(α0−α1β0)

β0

)
γ(y0

1 + y0
2)


Simplifying,

p∗

p†
=

(1− γ)(x0
1 + x0

2) + 2 (1−γ)(α0−α1β0)
β0

(1− γ)(x0
1 + x0

2) + 2 (1−γ)(α0−α1β1)
β1

Since β0 < β1, (1−γ)(α0−α1β0)
β0

> (1−γ)(α0−α1β1)
β1

. Therefore p∗

p†
> 1. Therefore Rγ =

(
p∗

p†

)γ
>

1. Therefore d∆U
dy0

< 0, so EJ Metric 3 holds: low-income households experience greater

deadweight loss from limited information.

Next consider the case where R > p∗

p†
. Take the derivative with respect to R of the entire

expression
(

(1− γ)Rγ + γ
(
p∗

p†

)
Rγ−1

)
. This derivative is equal to: γ(1−γ)

(
Rγ−1 −

(
p∗

p†

)
Rγ−2

)
.

Since p∗

p†
> 1 and R > p∗

p†
, the derivative is positive. Thus

(
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

)
> 1.

Therefore, d∆U
dy0

< 0 and EJ Metric 3 holds.

Next consider the case where R < p∗

p†
. Take the derivative with respect to R of the entire

expression
(

(1− γ)Rγ + γ
(
p∗

p†

)
Rγ−1

)
. This derivative is equal to: γ(1−γ)

(
Rγ−1 −

(
p∗

p†

)
Rγ−2

)
.

Since p∗

p†
> 1 andR < p∗

p†
, the derivative is negative. Thus the expression

(
(1− γ)Rγ + γ

(
p∗

p†

)
Rγ−1

)
>
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1. Therefore, d∆U
dy0

< 0 and EJ Metric 3 holds.
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A3.7 Equilibrium under Pure Exchange with Houses at Fixed Dis-

tance

Rather than modeling the choice of two houses at fixed distances from a point source of

pollution, we can instead consider a setting with two houses at fixed locations: one house

HH with high air quality, and one house HL with low air quality. As before, we assume there

are no other differences between the two houses. There are also two consumers, individual 1

and individual 2. As before, we assume the two individuals are identical in their preferences

and their access to information. All non-housing goods are aggregated into a numeraire good

y with price 1 and with total supply Y . Trade can occur via a transfer of size p from one

individual to another.

Whether or not a mutually beneficial trade exists depends, in part, on the initial allo-

cation. We first assume that the same individual holds the higher quality house HH and

a larger quantity of good y. In that case, this “high-income” individual will only accept a

trade if:

U(HL, yH + p) > U(HH , yH)

Subtract U(HL, yH) from both sides:

U(HL, yH + p)− U(HL, yH) > U(HH , yH)− U(HL, yH) (A1)

The “low-income” individual will only accept a trade if:

U(HH , yL − p) > U(HL, yL)

Subtract U(HL, yL − p) from both sides:

U(HH , yL − p)− U(HL, yL − p) > U(HL, yL)− U(HL, yL − p) (A2)

Both Equation A1 and Equation A2 must hold in order for a trade to occur.

If UHy (the cross partial) is non-negative – such as with Cobb-Douglas or additively

separable utility – then the right-hand side of Equation A1 is larger than the left-hand side

of Equation A2:

U(HH , yH)− U(HL, yH) > U(HH , yL − p)− U(HL, yL − p)

However, the right-hand side of Equation A2 is larger than the left-hand side of Equation A1

because of declining marginal utility (conditional on HL, p is worth more if you only have
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yL than when you have yH):

U(HL, yL)− U(HL, yL − p) > U(HL, yH + p)− U(HL, yH)

Therefore, under these conditions, there is no value of p for which Equations A1 and A2

both hold. In general, we expect this to be true if air quality is a normal good.

Given no trade, suppose that it is revealed that a polluter has been hiding emissions.

The typical pollution dissipation process described above implies that air quality is worse

everywhere than had been believed, and especially worse for the house with lower air qual-

ity HL. Thus, trade will still not occur, by the same logic as before. Furthermore, both

households experience lower utility, and the individual owning home HL experiences an even

bigger difference in utility. This is both because the wedge between true and believed air

quality is higher for that individual (because of the way pollution dissipates), and because

the marginal utility of air quality is higher for that individual (assuming, as is typical, that

marginal utility is declining). There is no feasible re-optimization that improves total wel-

fare. But it is the case that the low-income individual experiences greater hidden pollution

(i.e., Metric 2 holds), and that the welfare impact of that hidden pollution is larger for the

low-income individual (related to Metric 3, albeit without deadweight loss per se, since in

equilibrium the allocations do not change).

Now suppose that in the initial allocation, the individual with the larger initial allocation

of good y has the lower quality house HL. We will assume that housing is a small part of

the total budget for each individual and accordingly refer to the individual with a higher

initial allocation of y as the “high-income” individual. In this case, trade is possible, and we

consider the transfer required to induce such a trade. Utility for each individual, with and

without trade, is as follows:

� Low-income individual, no trade: U(HH , yL)

� High-income individual, no trade: U(HL, yH)

� Low-income individual, with trade: U(HL, yL + p)

� High-income individual, with trade: U(HH , yH − p)

Trade will occur if there is a transfer p such that both parties can be made weakly better

off: U(HL, yL + p) ≥ U(HH , yL) and U(HH , yH − p) ≥ U(HL, yH). Suppose again that it

is revealed that a polluter has been hiding emissions. To simplify the logic, consider the

case of additively separable utility. In this case, the transfer p needed to induce trade is

larger: the low-income individual requires a greater payment to accept the drop in utility
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from moving from HH to HL. Furthermore, the high-income individual is willing to make

a larger payment to obtain the increase in utility from moving from HL to HH . By not

knowing about the true level of emissions, the low-income individual has missed out on the

full value of the transfer payment p that she would actually require to be weakly better off

with trade.

To evaluate welfare, we can consider both the change in utility coming from the housing

stock and the change in utility coming from the numeraire good. Both households expe-

rience lower utility from housing, and the individual owning home HL in equilibrium (in

this case, the low-income individual) experiences an even bigger difference in utility. This is

both because the wedge between true and believed air quality is higher for that individual

(due to pollution dissipation), and because the marginal utility of air quality is higher for

that individual (due to declining marginal utility). Moreover, the low-income individual is

additionally worse off from a too-small transfer payment, while the high-income individual

is conversely better off for the same reason. Overall then, in this scenario, Metrics 2 and

3 both hold: the low-income individual experiences greater hidden pollution, and a greater

utility loss as a result of the information failure.
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A3.8 Optimization in the General Model

In one of the demand models in the main paper, we assume that households gain utility

from three goods: salient amenities s(x) that increase with distance to a point source,

hidden amenities q(x), and other goods y. Distance to the point source is priced according

to some positive hedonic pricing function p(x). The household’s optimization problem when

unaware of q(x) is:

max
x,y

U(s(x), y) s.t. p(x) + y = m

We assume that ∂q
∂x

> 0 and ∂s
∂x

> 0 (both amenities increase with distance) and ∂p
∂x

> 0

(house prices increase with distance). We also assume that all goods provide positive utility

at a declining rate: Uq > 0, Uqq < 0, etc.

The first-order conditions that define the chosen bundle (λ†, x†, y†) under limited infor-

mation are as follows:

m− p(x)− y = 0

Us
∂s

∂x
− λ∂p

∂x
= 0

Uy − λ = 0

To check that we are at an interior solution, we calculate the bordered Hessian:

D2L(λ, x, y) =

 0 − ∂p
∂x

−1

− ∂p
∂x

Uss
(
∂s
∂x

)2
+ Us

∂2s
∂x2
− λ ∂2p

∂x2
Usy

∂s
∂x

−1 Usy
∂s
∂x

Uyy


The determinant of this is:

−
(
∂p

∂x

)2

Uyy + 2
∂p

∂x
Usy

∂s

∂x
−
(
∂s

∂x

)2

Uss − Us
∂2s

∂x2
+ λ

∂2p

∂x2

For this to be positive, it must be the case that the two positive terms −
(
∂p
∂x

)2
Uyy and

−
(
∂s
∂x

)2
Uss are not swamped by any negative terms in the rest of the expression (the re-

maining three terms have ambiguous signs, depending on the signs of Usy,
∂2s
∂x2

, and ∂2p
∂x2

).

Assuming we are not at a corner solution, we can use comparative statics to find the sign

of the derivative of distance with respect to income, at the optimum:


∂λ†

∂m
∂x†

∂m
∂y†

∂m

 =

 0 − ∂p
∂x

−1

− ∂p
∂x

Uss
(
∂s
∂x

)2
+ Us

∂2s
∂x2
− λ ∂2p

∂x2
Usy

∂s
∂x

−1 Usy
∂s
∂x

Uyy


−1

·

−1

0

0


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By Cramer’s Rule, we have:

∂x†

∂m
=

∣∣∣∣∣∣∣
0 −1 −1

− ∂p
∂x

0 Usy
∂s
∂x

−1 0 Uyy

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
0 − ∂p

∂x
−1

− ∂p
∂x

Uss
(
∂s
∂x

)2
+ Us

∂2s
∂x2
− λ ∂2p

∂x2
Usy

∂s
∂x

−1 Usy
∂s
∂x

Uyy

∣∣∣∣∣∣∣
The numerator will be positive provided that Usy

∂s
∂x
> Uyy

∂p
∂x

. This is similar to the standard

condition under which a good is normal, with additional accounting for the shape of the

hedonic price function and the impact that distance x has on the good of interest s. Thus

we expect ∂x†

∂m
> 0, i.e., x will be a normal good.
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A3.9 Stone-Geary Preferences

Suppose we assume that the consumer has Stone-Geary utility U(q, y) = (q − η1)γ (y − η2)(1−γ).

As before, the first good, q, is unobserved healthiness. It is a function of observable distance

x to a point source: q = α0−α1β+βx. When households are fully informed, they know the

true α0, α1, and β parameters. Under limited information, they misperceive the β parame-

ter. The second good, y, is the other (i.e., numeraire) good, unrelated to distance x to the

point source. The individual has the following maximization problem:

max
x,y

U(q(x), y) s.t. px+ y = m

The first-order conditions that define the optimal bundle (λ∗, x∗, y∗) are as follows:

m− px− y = 0

γ (q − η1)γ−1

(
∂q

∂x

)
(y − η2)1−γ − λp = 0

(1− γ) (q − η1)γ (y − η2)−γ − λ = 0

Taking the second and third conditions above, we rearrange them so that the terms con-

taining λ are on the right-hand side. We then divide the second condition by the third and

rearrange terms to obtain
q∗ − η1

y∗ − η2

=
1

p
· γ

1− γ
· ∂q

∗

∂x∗

Note that we can express q∗ as a function of x∗, and that ∂q∗

∂x∗
= β. Substituting for y∗ using

the first first-order condition, we find the optimal, full-information choice of distance:

x∗ =
γm

p
− (1− γ)(α0 − α1β − η1)

β
− γη2

p

When a household learns the true β, she will move farther away:

∂x∗

∂β
=

(1− γ)(α0 − η1)

β2

However, the extent to which she does so does not depend on her income. This result is true

in our Cobb-Douglas model as well. Equivalently, ∂x∗

∂m
= γ

p
, which does not depend on β.
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A3.10 Constant Elasticity of Substitution (CES) Preferences

Suppose we assume that the consumer has CES utility U(q, y) = (qγ + yγ)1/γ. As before,

the first good, q, is unobserved healthiness. It is a function of observable distance x to a

point source: q = α0 − α1β + βx. When households are fully informed, they know the true

α0, α1, and β parameters. Under limited information, they misperceive the β parameter.

The second good, y, is the other (i.e., numeraire) good, unrelated to distance x to the point

source.

The individual has the following maximization problem:

max
x,y

U(q(x), y) s.t. px+ y = m

The first-order conditions that define the optimal bundle (λ∗, x∗, y∗) are as follows:

m− px− y = 0

(qγ + yγ)(1/γ)−1 qγ−1 ∂q

∂x
− λp = 0

(qγ + yγ)(1/γ)−1 yγ−1 − λ = 0

Taking the second and third conditions above, we rearrange them so that the terms con-

taining λ are on the right-hand side. We then divide the second condition by the third and

rearrange terms to obtain

q∗

y∗
=

(
p
∂q∗

∂x∗

) 1
γ−1

Note that we can express q∗ as a function of x∗, and that ∂q∗

∂x∗
= β. Substituting for y∗

using the first first-order condition, we find the optimal, full-information choice of distance:

x∗ =

(
m

β
γ
γ−1p

1
1−γ + p

)
−

(
(α0 − α1β) β

1
γ−1p

1
1−γ

β
γ
γ−1p

1
1−γ + p

)

We can explore this in two ways. First, recall the intuition we provide in Section 3.

We can evaluate how utility changes for a small perturbation of the value of x around the

uninformed equilibrium (q†, s†, y†). This utility change is given by Uq†
∂q†

∂x†
dx. As we discuss in

the main text, Uq† is larger for low-income consumers and ∂q†

∂x†
is weakly larger for low-income

consumers. That leaves the question of whether dx is larger for low-income or high-income

consumers.

In our Cobb-Douglas model, dx
∗

dm
does not depend on β. When a household learns pollution

is worse, she moves farther away from the point source – but the extent to which she does
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so does not depend on her income. In contrast, for CES utility, we have:

dx∗

dm
=

1

β
γ
γ−1p

1
1−γ + p

> 0

Distance is a normal good, as expected. How does the distance-income relationship vary

with β?

d2x∗

dmdβ
=

(
γ

1−γ

)
p

1
1−γ β

1
γ−1(

β
γ
γ−1p

1
1−γ + p

)2 > 0

High-income households move even further away than do low-income households if they

learn pollution is bad. In the intuition we use in our generalized model, this means that

DWL could be larger or smaller for high-income households; it is unclear. Low-income

households have a larger marginal utility from gains in x, and a weakly larger translation

into improvements in q (here, equivalent translation, as the dissipation function is linear),

but a smaller change in x when they learn the true β.

As we next show, whether DWL is larger or smaller for high-income households depends

on the dissipation function parameters, the utility parameters, income, and prices. That

is, it is straightforward to show parameterizations for which DWL is either increasing or

decreasing in income m. We show two examples, for which preferences are identical, but

prices are different, that lead to these two different distributional effects.

As shown above, the consumer selects distance x as follows:

x∗ =

(
m

β
γ
γ−1p

1
1−γ + p

)
−

(
(α0 − α1β) β

1
γ−1p

1
1−γ

β
γ
γ−1p

1
1−γ + p

)

From this, we can calculate the informed q∗ and uninformed q†:

q∗(x∗, β1) = α0 − α1β1 + β1

( m

β
γ
γ−1

1 p
1

1−γ + p

)
−

(α0 − α1β1) β
1

γ−1

1 p
1

1−γ

β
γ
γ−1

1 p
1

1−γ + p



q†(x†, β1) = α0 − α1β1 + β1

( m

β
γ
γ−1

0 p
1

1−γ + p

)
−

(α0 − α1β0) β
1

γ−1

0 p
1

1−γ

β
γ
γ−1

0 p
1

1−γ + p


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Similarly, we can also calculate the informed y∗ and uninformed y†:

y∗ = m− p ·

( m

β
γ
γ−1

1 p
1

1−γ + p

)
−

(α0 − α1β1) β
1

γ−1

1 p
1

1−γ

β
γ
γ−1

1 p
1

1−γ + p



y† = m− p ·

( m

β
γ
γ−1

0 p
1

1−γ + p

)
−

(α0 − α1β0) β
1

γ−1

0 p
1

1−γ

β
γ
γ−1

0 p
1

1−γ + p


From these, we can calculate DWL:, U(q∗, y∗)−U(q†, y†). We show one example param-

eterization for which DWL is decreasing in m for some regions of m and increasing in others.

The parameter values are as follows:

� α0 = 9000

� α1 = 17000

� β0 = 0.4

� β1 = 0.5

� γ = 0.7

� p = 1

� 71000 < m < 107000

As Figure A4 shows, DWL is decreasing in m up until approximately m = 95000; it is

increasing in m thereafter. Note these parameter values are not chosen to be empirically

realistic; rather to show a simple case for which DWL could be either increasing or decreasing

in m. Overall, with CES utility, it becomes an empirical question whether high-income or

low-income households are made better off by improved information.
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Figure A4: Deadweight Loss at Various Income Levels, CES Util-
ity

Note: This figure plots deadweight loss across different income levels, for the parameter-
ization described in the text.
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A4 Empirical Exercises

A4.1 Who Is Impacted by Limited Information?

There are a great many instances in which individuals, communities, and societies have

realized that pollution was worse or more detrimental than previously thought. In this

subsection, we briefly introduce two such instances and present descriptive empirical facts

that clarify who is likely to have borne the historical health burden of collective information

failure. These empirical exercises are not intended to in of themselves prove welfare impacts,

but rather to provide intuition for the results of our theoretical modeling.

Consider first new information about the health impacts of lead that emerged from re-

search in the mid-2000s. This information was so compelling that the EPA dropped the

federal ambient lead standard by an order of magnitude in 2008. Prior to this information

becoming public, we might infer that communities had incorrect beliefs about the health

damages of high lead concentrations. This could be modeled in our theoretical framework

as an incorrect belief about β if higher levels of lead had proportionately higher damages to

health. As such, it is worth considering which communities were experiencing the highest

ambient lead exposure at the time of the EPA’s standard change. Note that the analysis that

follows does not focus on the change in the standard’s level per se, but rather is motivated

by the existence of new scientific information that caused the standard to change.

We assemble EPA monitoring data on annual average concentrations of airborne lead5 as

measured by the speciated PM2.5 monitoring network.6 We locate each monitor in a 5-digit

Zip Code Tabulation Area (ZCTA) using latitude and longitude data provided by the EPA

and shapefiles from the 2000 Census. To these data, we add demographic characteristics

of neighborhoods at the zip code level from the 2000 Census. Descriptive statistics are in

Appendix Table A2; we note that the mean level of measured lead is well below the new

standard.

We regress each demographic characteristic on the level of airborne lead (logged).7 We

include fixed effects at the level of a core-based statistical area (CBSA), to compare residents

of the same metro area with low versus high levels of lead.8 As we show in Panel A of

5Lead exposure can also occur via soil or water contamination, so the air concentrations on which we
focus do not represent all forms of lead exposure.

6The EPA’s Chemical Speciation Network measures the amount of various elements (e.g., arsenic, cad-
mium, lead, etc.) in collected particulate matter.

7We use lead data from 2001, representing an intermediate year between the 2000 Census and the 2008
standard change. Lead monitoring in 1999 and 2000 (i.e., more closely matching the demographic data) is
very sparse. Results using data from 2008 (i.e., at the time of the standard change) are very similar to the
2001 results; see Appendix Table A4.

8Around 4.5 percent of the population is in a Zip Code Tabulation Area that does not match to a CBSA;
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Table A3, communities with high lead concentrations tend to have lower incomes, greater

unemployment rates, a higher proportion of families below the poverty line, and a higher

proportion of people of color. Unsurprisingly, the standard errors are large; only 206 zip

codes had a monitor for speciated particulate matter in this year, and we are relying for

identification on CBSAs with multiple zip codes containing monitors (n = 95). Regressions

without CBSA fixed effects, in Appendix Table A4, yield the same directional impacts and

much greater statistical significance. If we instead use modeled lead concentrations from

the 2002 National Air Toxics Assessment, which cover the entire US, we obtain qualitatively

similar estimates with more precision (again, see Appendix Table A4).

The simplest interpretation of these results (particularly the first three columns, relating

to income, unemployment, and poverty) might be that lack of lead pollution is a normal

good – i.e., our first environmental justice metric. However, this would miss the key point

that communities were not fully aware of lead’s impacts. Indeed, the results also point

to our second environmental justice metric – that low-income communities (and people of

color) were historically the most physically impacted by incomplete scientific information

about the health impacts of lead. To measure the welfare implications (our third metric),

one could next examine whether households moved following the release of the new scientific

information. However, additional data or assumptions would be needed on (1) the degree to

which (and mechanisms by which) the public became aware of the new scientific information;

(2) moving costs; and (3) other potential confounders in the housing market over this time

period.

A second empirical example illustrates how underreporting of pollution may affect the

distributional impacts of emissions. In October 1999, the EPA issued an enforcement alert

for the petroleum refining sector. The alert stated that an EPA monitoring program had

shown “that the number of leaking valves and components is up to 10 times greater than had

been reported by certain refineries,” and that as a result, emissions rates of volatile organic

compounds (some of them hazardous chemicals) were substantially higher than had been

reported by firms (EPA, 1999). Again, this can be modeled as implying an incorrect belief

about the β parameter in our model – given the way pollution dissipates, being closer to a

refinery would imply proportionately higher concentrations of air pollution.

We can assess who is likely to have been most impacted by this historical underreporting

by investigating the characteristics of people living near refineries prior to the EPA’s alert.

We thus obtain information on the location of US petroleum refineries from the EPA’s

National Emissions Inventory (NEI). Specifically, we analyze all zip codes with a facility in

the 1999 NEI that was classified in SIC sector 2911 (Petroleum Refining); 210 zip codes had

we drop these ZCTAs from our regressions.
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such a facility in 1999. Using the 2000 Census data described above, we examine differences

in demographic characteristics across zip codes with and without a refinery. Note that

the 2000 Census asks about income in 1999, i.e., at the time the Enforcement Alert was

published.

We regress each demographic variable on the refinery indicator, including CBSA fixed

effects, to compare communities in the same metro area.9 Results, in Panel B of Table A3,

show that zip codes with refineries in them had significantly lower income levels and signifi-

cantly higher proportions of non-White families and families below the poverty line (we show

results without CBSA effects in Appendix Table A5). Thus, it appears that the communities

most physically impacted by the historical underreporting were economically disadvantaged

and non-White. These results again are consistent with both our first and second environ-

mental justice metrics; additional modeling assumptions and empirical evidence would be

needed to analyze the full welfare impacts.

A4.2 Co-located Amenities

In this Appendix section, we study the empirical relationships between disamenities of differ-

ent levels of salience, as motivated by our general model and summary discussion of correlated

disamenities in the main text. To do so, we assemble data on air pollution, noise pollution,

and land use. From the EPA’s monitoring network, we collect ambient concentrations of

four criteria pollutants – NO2, ozone, PM2.5, and SO2 – and two toxic pollutants – benzene

and toluene. As described above, these latter two compounds are emitted by the refining

industry (as well as other industries) and have negative developmental and/or carcinogenic

effects. We focus on benzene and toluene both because (1) refining has been a focus of the

environmental justice movement (Fleischman and Franklin, 2017); and (2) the monitoring

network of these chemicals is denser than is the monitoring of other hazardous air pollutants.

We observe annual average concentrations by monitor for the year 2001 (which matches

the time period of our land use data),10 and we locate each monitor in a 5-digit ZCTA using

latitude and longitude data provided by the EPA. Unfortunately, even for these six criteria

and hazardous pollutants (which have the densest coverage in the EPA dataset), monitoring

is quite incomplete; we observe the fewest zip codes for toluene (215 total) and the most for

9The NEI dataset appears to classify some facilities, such as tank farms, as SIC 2911, in addition to
refineries. We perform a fuzzy string match to match EPA NEI facilities to petroleum refineries listed in the
US Energy Information Administration’s (EIA) Petroleum Supply Annual. Regressions using the subset of
facilities that match to the EIA report (located in 137 zip codes, rather than 210) yield similar results; see
Appendix Table A5.

10In Appendix Table A7, we show results using pollution measures from 2016.
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ozone (1,116 zip codes) in our analysis.11

We collect data on one additional measure of pollution exposure, modeled cancer risk,

from the EPA’s 2002 National Air Toxics Assessment (NATA). This measure takes emissions

data from the National Emissions Inventory – covering both point and nonpoint sources –

and imputes cancer risk.12 An advantage of these data is that the EPA presents estimates

for every zip code, so we have broader coverage than for the measured pollution concentra-

tion data.13 Additionally, the variable aggregates the risk associated with many different

pollutants. A disadvantage is that the risk is modeled based on NEI emissions, rather than

measured in the way that concentrations of our six criteria and toxic pollutants come directly

from pollution monitors.14

We merge these pollution exposure variables with noise and land use data.15 Noise

data come from the Department of Transportation’s National Transportation Map. Like

our estimates of cancer risk, our estimates of noise are modeled, rather than measured.

They are based on information about major roadways as well as airports, and “represent

the approximate average noise energy due to transportation noise sources over the 24 hour

period.”16 Meanwhile, land use data are published by the US Geological Survey at the

Department of the Interior.17 The key variable is a land use classification – such as “developed

- high intensity,” “developed - medium intensity,” “water,” or “wetlands” – derived from

satellite imaging. We tabulate descriptive statistics in Appendix Table A2.

We start by examining the correlation between salient disamenities (noise and ugly views)

and NO2. NO2 causes negative health effects such as asthma and cardiovascular conditions,

and mobile sources (trucks and cars) are a major contributor to NO2. The left-hand panel

11We provide coverage maps in Appendix Figure A6.
12More specifically, the NATA uses NEI emissions, dispersion and deposition models, and an inhalation

exposure model (which includes components such as a human activity pattern database).
13The EPA NATA data are at the Census Tract level. We match these to zip codes using a 2010 US

Department of Housing and Urban Development crosswalk. Around 0.2 percent of the conterminous US
population is in a ZCTA that does not directly merge with the NATA data; we drop these ZCTAs from our
cancer risk regression.

14The EPA cautions that NATA should not be used for analyses such as “pinpoint[ing] specific risk values
within a census tract,” but argues that the results “help to identify geographic patterns and ranges of risks
across the country” (Environmental Protection Agency, 2011, p 5) We use the NATA data in ways consistent
with the latter but caveat our results accordingly. Interestingly, one of the reasons EPA provides caution
about NATA data is that they have, over time, provided “a better and more complete inventory of emission
sources, an overall increase in the number of air toxics evaluated, and updated health data for use in risk
characterization” (Environmental Protection Agency, 2011, p 6) – supporting our argument that historically,
pollution exposure has been (uninentionally) underreported.

15Again, we use 2000 Census shapefiles to match locations to ZCTAs.
16This description is from http://osav-usdot.opendata.arcgis.com/. We use 2018 noise data; data for 2001

are not available.
17Specifically, we use the 2001 Land Cover 100 Meter Resolution - Conterminous United States, Albers

Projection data.

A-33



of Figure A5 plots NO2 concentrations against noise levels and reveals a strong positive cor-

relation between these two disamenities. The right-hand panel similarly plots NO2 against a

zip code’s proportion of land dedicated to high-intensity development; the fitted relationship

is similarly positive. From these two figures, then, it is clear that a household wishing to

avoid noise or to avoid high-intensity development (perhaps because of visual disamenities)

would also likely avoid high concentrations of NO2.

We next turn to regression analysis. Table A6 shows regressions of each measure of

pollution exposure on the more salient disamenities of noise and land use. The pollution

exposure variables are all in logs, as is the noise variable. The land use variables each

represent the percentage of the zip code’s area that is dedicated to a particular land use.

The omitted category of land use is forest. We include fixed effects at the level of a core-

based statistical area in all seven regressions. These regressions are not intended to provide

causal estimates of amenities on pollution exposure. Rather, they are intended to show

cross-sectional correlations between ambient amenities and pollution exposure. The thought

experiment that they are designed to replicate is: if an individual were to choose one zip

code over another (within a metro area) based on the geographic variation in noise level and

land use, what is the typical level of pollution to which she would be exposed? Because

individuals make these decisions infrequently, we rely solely on cross-sectional variation.

Column 1 shows that a higher level of the salient disamenity implies a higher measure

of pollution exposure. When an individual accepts a doubling of noise, she also accepts a

roughly 13 percent higher concentration of NO2, statistically significant at the one-percent

level. Similarly, if she were to move from an entirely forested area to an area that was

entirely high-intensity development, she would experience roughly 60 log points more NO2

(or more than 80 percent), again statistically significant at the one-percent level. As one

moves from high-intensity development down to low-intensity development, the pollution

exposure drops. Wetlands and barren land have the lowest levels of NO2, conditional on the

CBSA fixed effects and on a level of noise.

Ozone shows the opposite pattern. Ozone forms from the interaction of two separate

types of chemicals: nitrogen oxides (NOx) and volatile organic compounds (VOCs). While

human activity emits both of these pollutant types, vegetation is major source of VOCs

(Auffhammer and Kellogg, 2011). As a result, rural and suburban areas can have high levels

of ozone concentration.

PM2.5, however, follows a pattern similar to that of NO2, with the highest concentrations

in zip codes that are noisy and more intensely developed. As with NO2, the concentrations

decline as one moves from high-intensity development to medium- and then low-intensity

development. SO2 does not follow this clear pattern, perhaps because it is travels fairly far
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(Burtraw et al., 2005). However, “the largest threat of SO2 to public health is its role as

a precursor to the formation of secondary particulates, a constituent of particulate matter”

(Burtraw et al. 2005, p. 257), so the PM2.5 results are arguably more relevant for the thought

exercise we are carrying out. Benzene, toluene, and cancer risk all follow a pattern similar

to that of NO2 and PM2.5.18

Overall, across the seven regressions, we see that five major types of pollutants are closely

and positively correlated with noise and land use. The two exceptions are ozone (which

displays the opposite relationship) and SO2 (for which no statistically significant relationship

appears in the regression results). We take this as evidence that non-salient environmental

disamenities are co-located with more salient ones, consistent with one interpretation of the

generalized form of our theoretical model.

Finally, in Appendix Tables A8 through A10, we briefly examine whether these co-located

disamenities are correlated with household sorting decisions. Using the income data from

the 2000 Census that we described above, we regress median household income at the zip

code level on various types of disamenities.19 We show first that zip codes with high levels of

PM2.5 and zip codes with higher cancer risk have significantly lower incomes. We then run

a “horse race” regression by including noise levels and land use variables. We show that the

magnitudes of the coefficients on PM2.5 and cancer risk drop substantially and lose statistical

significance. In contrast, high-intensity development is associated with a significantly lower

income level. This suggests that co-located disamenities may be playing an important role

in the decision of households of where to live. Importantly, we note that households may

still have a positive willingness to pay for ambient environmental quality, because the small

coefficients on PM2.5 and cancer risk in the horse race regressions could reflect a lack of

information rather than a lack of willingness to pay.

18In the cancer risk regression, there is a positive and statistically significant coefficient on both the water
and wetlands variables. Part of the explanation may be that ports and other industrial facilities are located
near water. Coverage maps in Appendix Figure A7 show where water and wetlands appear.

19As before, we include CBSA fixed effects to compare households within a metro area.

A-35



Figure A5: Noise and Land Use Are Correlated with Pollution Exposure

Note: The left-hand figure plots the annual average NO2 level (measured in parts per billion) in a 5-digit Zip Code Tabulation
Area in 2001 against the transportation noise in that area (measured in LAeq , roughly equivalent to decibels). The right-hand
figure similarly plots the annual average NO2 level (measured in parts per billion) in a 5-digit Zip Code Tabulation Area in
2001 against the portion of the land in that zip code dedicated to high-intensity development. Data sources are the EPA, DOT,
and USGS; see text for details. The black line shows a linear fit. Roughly 400 zip codes have NO2 monitors.
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Figure A6: Data Coverage

Note: These figures plot a dot in each Zip Code Tabulation Area with both land use
data and the additional data (either noise or air quality).
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Figure A7: Water and Wetlands Locations

Note: These figures plot a dot in each Zip Code Tabulation Area with a non-zero portion
of the ZCTA devoted to water or wetlands.
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Table A2: Summary Statistics

Mean Std. Dev. N

Pollution levels:
Lead in PM2.5, µg/m3 0.004 0.007 246
NO2, ppb 28.490 12.354 425
Ozone, ppm 0.046 0.007 1,116
PM 2.5, µg/m3 12.571 3.631 1,053
SO2, ppb 14.134 10.025 503
Benzene, ppbc 3.344 2.999 224
Toluene, ppbc 8.475 6.559 215
Cancer risk, per billion 0.024 0.015 31,126

Refinery in zip code, NEI definition 0.006 0.080 32,718
Refinery in zip code, EIA match 0.004 0.065 32,718

Noise, LAeq 14.237 14.068 30,999
Land use:

Developed, high intensity 0.018 0.099 30,905
Developed, medium intensity 0.047 0.157 30,905
Developed, low intensity 0.067 0.169 30,905
Developed, open space 0.041 0.116 30,905
Barren land 0.003 0.024 30,905
Forest, shrubland, or grassland 0.446 0.371 30,905
Farmland 0.316 0.352 30,905
Wetlands 0.043 0.114 30,905
Water 0.018 0.069 30,905

Demographics:
Median household income, ’000s 39.630 16.230 31,645
Percent unemployed 3.450 3.199 31,712
Percent of families below the poverty line 9.891 9.152 31,590
Percent White 86.746 19.564 31,789
Percent Black 7.806 16.300 31,789
Percent Latino/a 6.375 13.500 31,789

Notes: A unit of observation is a Zip Code Tabulation Area. Air pollution data are annual av-
erages for the year 2001. Each air pollutant is measured using whatever averaging time is used
for the primary standard (e.g. 1-hour vs 8-hour vs 24-hour) that was in effect in 2018. Noise
data are in a 24-hr equivalent sound level (LEQ, denoted by LAeq) noise metric. Data are from
the Environmental Protection Agency, the Energy Information Administration, the US Geolog-
ical Survey, the Department of Transportation, and the Census. See text for details.
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Table A3: Demographic Characteristics Were Correlated with Pollution Exposure Prior to
Full Information Provision

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Panel A. Ambient Lead Exposure in 2001

Log airborne lead concentration -4.21 0.44 2.67 -11.72** 5.50 5.27**
(2.60) (0.43) (1.71) (4.57) (4.09) (2.40)

Observations 203 203 203 203 203 203
Within R2 0.04 0.02 0.04 0.10 0.03 0.07
Mean of dep. var. 37.07 4.80 13.18 74.61 16.37 11.98

Panel B. Refinery Locations in 1999

Refinery in zip code -4.30*** 0.43** 2.07*** -4.29*** 2.10** 5.90***
(1.01) (0.21) (0.53) (1.17) (1.00) (0.68)

Observations 23,854 23,892 23,833 23,912 23,912 23,912
Within R2 0.00 0.00 0.00 0.00 0.00 0.00
Mean of dep. var. 42.42 3.42 9.00 85.68 8.53 7.15

Note: This table reports estimates and standard errors from twelve separate regressions. The dependent variable is listed above
each column. In Panel A, the independent variable is ambient lead concentrations: logged lead in PM2.5 form. In Panel B, the
independent variable is a dummy for whether a refinery is located in the zip code. The unit of observation is a 5-digit Zip Code
Tabulation Area. Income is the median household income in the zip code, in thousands of 1999 dollars. Percent below poverty
refers to the percentage of families below the poverty line. Percentage White, Black, and Latino/a refer to the percentage of
individuals. Data source: Census for demographics; EPA for ambient lead concentrations; EIA’S Petroleum Supply Annual
and EPA’s National Emissions Inventory for refinery locations. All regressions include CBSA fixed effects. *** Statistically
significant at the 1% level; ** 5% level; * 10% level. ” ”
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Table A4: Robustness: Demographic Characteristics Were Correlated with Ambient Lead
Exposure

Panel A. Using 2008 Ambient Lead Data

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Log airborne lead concentration -6.25** 1.26 2.83 -10.93** 2.97 5.28*
(2.85) (0.80) (2.53) (4.67) (3.88) (2.89)

Observations 289 290 288 290 290 290
Within R2 0.05 0.03 0.01 0.06 0.01 0.04
Mean of dep. var. 36.85 4.98 13.17 74.82 15.65 11.82

Panel B. Using 2001 Ambient Lead Data, No CBSA Fixed Effects

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Log airborne lead concentration -1.67** 0.49** 2.89*** -11.39*** 10.88*** 0.88
(0.85) (0.23) (0.64) (1.46) (1.34) (1.15)

Observations 245 245 244 245 245 245
R2 0.02 0.02 0.08 0.20 0.21 0.00
Mean of dep. var. 36.20 4.71 13.04 77.52 13.93 11.39

Panel C. Using Modeled Ambient Lead Concentration Data from the 2002 NATA

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Log lead concentration -0.63*** 0.59*** 1.55*** -9.33*** 6.24*** 3.62***
(0.17) (0.03) (0.09) (0.19) (0.16) (0.11)

Observations 23,774 23,808 23,753 23,827 23,827 23,827
Within R2 0.00 0.01 0.01 0.10 0.06 0.04
Mean of dep. var. 42.45 3.41 8.98 85.69 8.53 7.15

Note: This table is identical to Panel A of Table A3 in the main text, but with the changes noted in the panel titles. ***
Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A5: Robustness: Demographic Characteristics Were Correlated with Proximity to
Refineries

Panel A. Using only refineries listed in the EIA’s Petroleum Supply Annual

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Refinery in zip code -4.02*** 0.48* 2.29*** -4.07*** 1.48 5.96***
(1.23) (0.25) (0.65) (1.42) (1.21) (0.83)

Observations 23,854 23,892 23,833 23,912 23,912 23,912
Within R2 0.00 0.00 0.00 0.00 0.00 0.00
Mean of dep. var. 42.42 3.42 9.00 85.68 8.53 7.15

Panel B. Using all NEI-listed facilities, No CBSA Fixed Effects

Income, ’000s % Unempl. % Below Poverty % White % Black % Latino/a

Refinery in zip code -1.48 0.83*** 3.15*** -12.69*** 5.46*** 10.57***
(1.12) (0.22) (0.63) (1.35) (1.13) (0.93)

Observations 31,645 31,712 31,590 31,789 31,789 31,789
R2 0.00 0.00 0.00 0.00 0.00 0.00
Mean of dep. var. 39.63 3.45 9.89 86.75 7.81 6.37

Note: This table is identical to Panel B of Table A3 in the main text, but with the changes noted in the panel
titles. *** Statistically significant at the 1% level; ** 5% level; * 10% level..
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Table A6: Pollution Risk is Correlated with Other Disamenities

NO2 Ozone PM2.5 SO2 Benzene Toluene Cancer risk

Noise 0.13*** -0.01** 0.06*** 0.06 0.19 0.19 0.04***
(0.04) (0.01) (0.02) (0.06) (0.14) (0.15) (0.00)

Land use:
Developed, high intensity 0.60*** -0.22*** 0.28*** 0.22 0.55** 0.69** 0.93***

(0.11) (0.03) (0.04) (0.17) (0.26) (0.29) (0.01)
Developed, medium intensity 0.35*** -0.12*** 0.21*** -0.06 0.59** 0.49* 0.55***

(0.10) (0.02) (0.04) (0.16) (0.25) (0.28) (0.01)
Developed, low intensity 0.33*** -0.05* 0.10** -0.01 0.29 0.88** 0.53***

(0.12) (0.03) (0.04) (0.19) (0.31) (0.36) (0.01)
Developed, open space 0.40** 0.02 0.14** -0.03 0.36 0.14 0.51***

(0.19) (0.04) (0.06) (0.27) (0.44) (0.47) (0.01)
Water 0.32 0.01 0.04 0.25 0.54 0.33 0.27***

(0.22) (0.06) (0.10) (0.43) (0.47) (0.51) (0.02)
Wetlands -0.75*** -0.10** 0.14 -0.00 0.39 0.47 0.16***

(0.22) (0.05) (0.08) (0.34) (0.42) (0.46) (0.02)
Farmland 0.07 -0.02 0.17*** -0.12 -0.17 -0.38 0.00

(0.10) (0.02) (0.04) (0.18) (0.28) (0.31) (0.01)
Barren land -0.61 0.12 -0.96*** 0.26 0.28 -0.30 0.02

(0.41) (0.10) (0.23) (1.07) (2.36) (2.55) (0.06)

Observations 408 1,049 980 465 216 208 23,328
Within R2 0.49 0.21 0.32 0.04 0.28 0.34 0.48

Note: This table reports estimates and standard errors from seven separate regressions. The dependent variable in the first
six columns is log ambient concentrations; in the last column it is log total cancer risk. The unit of observation is a 5-digit
Zip Code Tabulation Area. The noise variable is also logged. Land use variables are the portion of the zip code dedicated
to that land use; the omitted category of land use is forest. All regressions include CBSA fixed effects. *** Statistically
significant at the 1% level; ** 5% level; * 10% level.
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Table A7: Robustness: 2016 Air Quality Data

NO2 Ozone PM2.5 SO2 Benzene Toluene Cancer risk

Noise 0.23*** 0.00 0.09*** -0.27** -0.03 0.06 0.04***
(0.06) (0.00) (0.02) (0.13) (0.09) (0.14) (0.00)

Land use:
Developed, high intensity 0.77*** -0.16*** 0.19*** 0.51 0.49*** 0.79*** 0.93***

(0.17) (0.02) (0.06) (0.32) (0.17) (0.27) (0.01)
Developed, medium intensity 0.42*** -0.08*** 0.19*** 0.52* 0.57*** 0.96*** 0.55***

(0.15) (0.02) (0.05) (0.28) (0.17) (0.27) (0.01)
Developed, low intensity 0.54*** -0.03 0.06 0.06 0.30 0.66* 0.53***

(0.19) (0.02) (0.06) (0.35) (0.21) (0.33) (0.01)
Developed, open space 0.36 0.01 0.14* 0.02 0.30 -0.12 0.51***

(0.25) (0.02) (0.08) (0.52) (0.31) (0.49) (0.01)
Water 0.88** -0.02 0.12 -0.17 1.08** 3.01*** 0.27***

(0.36) (0.05) (0.13) (0.89) (0.43) (0.66) (0.02)
Wetlands -0.50 -0.05 0.14 -0.81 -0.67 0.86 0.16***

(0.32) (0.04) (0.14) (0.61) (0.44) (0.68) (0.02)
Farmland 0.25 -0.06*** 0.16*** 0.07 0.18 0.03 0.00

(0.17) (0.01) (0.05) (0.34) (0.23) (0.37) (0.01)
Barren land -0.08 0.02 0.09 1.55 0.50 -1.78 0.02

(0.69) (0.09) (0.43) (1.83) (1.68) (2.60) (0.06)

Observations 402 1,103 829 390 192 188 23,328
Within R2 0.43 0.12 0.22 0.06 0.28 0.43 0.48

Note: Regressions are identical to Table A6 in the main text, but with 2016 air quality data. *** Statistically significant at
the 1% level; ** 5% level; * 10% level.
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Table A8: Income is Correlated with Disamenities

(1) (2) (3)

PM 2.5 (log) -0.65*** -0.15
(0.09) (0.09)

Cancer risk, per million (log) -0.45*** -0.12**
(0.04) (0.05)

Log noise 0.06*
(0.03)

Land use:
Developed, high intensity -0.87***

(0.10)
Developed, medium intensity -0.61***

(0.09)
Developed, low intensity -0.19**

(0.09)
Developed, open space 0.07

(0.12)
Water -0.85***

(0.22)
Wetlands -0.18

(0.18)
Farmland -0.00

(0.09)
Barren land -1.42***

(0.49)

Observations 980 980 980
Within R2 0.09 0.17 0.39

Note: This table reports estimates and standard errors from three sepa-
rate regressions. The dependent variable in all columns is logged median
household income in 1999. The unit of observation is a 5-digit Zip Code
Tabulation Area. The noise, PM 2.5, and cancer risk variables are also
logged. Land use variables are the portion of the zip code dedicated to
that land use; the omitted category of land use is forest. All regressions
include CBSA fixed effects. All three columns restrict the sample to zip
codes with PM 2.5, cancer risk, noise, and land use data. *** Statisti-
cally significant at the 1% level; ** 5% level; * 10% level.
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Table A9: Robustness: Income is Correlated with Disamenities

(1) (2) (3) (4) (5) (6) (7) (8)

NO2 (log) -0.46*** -0.30***
(0.06) (0.08)

Ozone (log) 0.94*** 0.29***
(0.11) (0.11)

PM 2.5 (log) -0.65*** -0.19**
(0.09) (0.09)

SO2 (log) -0.13** -0.07
(0.05) (0.04)

Log noise 0.16*** 0.05*** 0.05 0.05
(0.05) (0.02) (0.03) (0.05)

Land use:
Developed, high intensity -0.89*** -0.93*** -0.94*** -0.85***

(0.14) (0.09) (0.09) (0.12)
Developed, medium intensity -0.57*** -0.55*** -0.65*** -0.63***

(0.12) (0.06) (0.08) (0.11)
Developed, low intensity -0.32** -0.28*** -0.22** -0.17

(0.15) (0.07) (0.09) (0.13)
Developed, open space 0.07 0.15 0.05 0.27

(0.23) (0.11) (0.12) (0.19)
Water -0.22 -0.16 -0.94*** -0.33

(0.27) (0.18) (0.22) (0.30)
Wetlands -0.27 -0.33** -0.18 0.05

(0.27) (0.13) (0.18) (0.24)
Farmland -0.08 -0.02 0.01 0.10

(0.13) (0.06) (0.09) (0.13)
Barren land -1.06** -0.16 -1.36*** -0.58

(0.49) (0.29) (0.49) (0.76)

Observations 408 408 1,049 1,049 980 980 465 465
Within R2 0.18 0.38 0.09 0.31 0.09 0.38 0.02 0.35

Note: This table is identical to Table A8, but for additional pollutants. The dependent variable is the log of median household
income in a Zip Code Tabulation Area in 1999. The pollutants cannot all be combined into one regression because there are
insufficient zip codes with monitors for all pollutants. *** Statistically significant at the 1% level; ** 5% level; * 10% level.
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Table A10: Robustness: Income is Correlated with Disamenities

(1) (2) (3) (4) (5) (6)

Benzene (log) -0.34*** -0.14**
(0.06) (0.06)

Toluene (log) -0.25*** -0.06
(0.06) (0.06)

Cancer risk, per million (log) -0.08*** 0.19***
(0.01) (0.01)

Log noise -0.04 -0.07 0.02***
(0.09) (0.10) (0.00)

Land use:
Developed, high intensity -0.92*** -0.95*** -1.06***

(0.18) (0.19) (0.02)
Developed, medium intensity -0.47*** -0.52*** -0.61***

(0.17) (0.18) (0.01)
Developed, low intensity -0.16 -0.13 -0.21***

(0.21) (0.23) (0.01)
Developed, open space -0.10 -0.14 0.14***

(0.29) (0.30) (0.02)
Water 0.19 0.16 -0.07***

(0.31) (0.33) (0.03)
Wetlands -0.29 -0.32 -0.09***

(0.28) (0.30) (0.02)
Farmland -0.01 -0.01 0.01

(0.18) (0.20) (0.01)
Barren land -0.58 -0.65 -0.18**

(1.56) (1.62) (0.08)

Observations 216 216 208 208 23,293 23,293
Within R2 0.19 0.49 0.13 0.47 0.01 0.22

Note: This table is identical to Table A8, but for additional pollutants. The dependent variable is the
log of median household income in a Zip Code Tabulation Area in 1999. The pollutants cannot all be
combined into one regression because there are insufficient zip codes with monitors for all pollutants. ***
Statistically significant at the 1% level; ** 5% level; * 10% level.
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