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Machine Learning about Treatment Effect Heterogeneity: 
The Case of Household Energy Use†

By Christopher R. Knittel and Samuel Stolper*

The rise of randomized controlled trials in 
economics has produced a wealth of evidence 
on the average causal effect of a great number of 
social and  private sector programs. Yet such pro-
grams often have divergent impacts across the 
treated population. Understanding how different 
subgroups respond to a given treatment has the 
potential to unlock large increases in program 
effectiveness by allowing for improved target-
ing of the existing treatment (that is, identifying 
whom to treat) as well as improved design of the 
treatment itself (for example, tailoring treatment 
for specific subgroups).

 Machine learning methods are an attractive 
option for identifying heterogeneous treat-
ment effects (TEs) (Athey and  Imbens 2016, 
Chernozhukov et  al. 2018), because they offer 
tools for estimation that minimize the need 
for parametric assumptions and maximize 
 out-of-sample predictive accuracy. In this 
paper, we estimate the heterogeneous TEs of a 
 large-scale randomized experiment in household 
energy use. The treatment is the Home Energy 
Report (HER), a common behavioral nudge 
toward household energy conservation. We use 
the causal forest algorithm (Wager and  Athey 
2018) to predict TEs among 700,000 households 
and investigate the role of household character-
istics in determining outcomes.

Our results contribute to an emerging empiri-
cal literature leveraging machine learning meth-
ods (Davis and  Heller 2020, Kleinberg et  al. 
2018) as well as a large literature on the TEs 
of behavioral nudges (Ferraro and Price 2013; 
Andreoni, Rao, and Trachtman 2017). HERs in 
particular have been well studied: they reduce 
consumption on average (e.g., Allcott 2011), but 
there is some evidence of heterogeneity (Costa 
and  Kahn 2013, Allcott and  Kessler 2019), 
including boomerang effects (that is, increases 
in consumption; Byrne, Nauze, and  Martin 
2018). We build on this literature by predicting 
the full distribution of individual TEs of a  widely 
used nudge as well as by identifying important 
correlates.

Our  difference-in-difference estimate of the 
pooled average treatment effect (ATE) across all 
HER program waves is a reduction in monthly 
electricity usage of 9  kilowatt-hours (kWh), or 1 
percent. The causal forest produces a full distri-
bution of predicted individual TEs, ranging from 
−40 to +10 kWh, and with multiple statistical 
“modes” of response. In the first year of treat-
ment, one mode is centered on −9 kWh, while 
another is centered on zero. In subsequent years, 
the modes diverge: the households that reduced 
consumption in year one ramp up their reduc-
tions, while boomerang effects become increas-
ingly prevalent.

The most  commonly used household char-
acteristics in the forest are baseline (that is, 
 pre-treatment) consumption and home value, 
which indicates that these variables in particu-
lar have significant predictive power. However, 
the bivariate relationships between individual 
treatment effect and each of these variables are 
not linear; the forest captures predictive effects 
that may not be apparent in the results of con-
ventional regression models. In aggregate, the 
results of the causal forest indicate significant 
potential for efficiency improvements through 
selective targeting and adjustment of the HER 
“treatment.”
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I. Empirical Strategy

A. Data

We work with Eversource, an electric and 
natural gas utility in the northeastern United 
States, to study the impact of HERs. We collect 
data from households included in 15 waves of 
HER experiments that began between 2014 and 
2017 (see Knittel and Stolper 2019 for further 
details). We observe treatment assignment, wave 
start date, monthly electricity consumption in 
kWh from 2013 to 2018, and 14  cross-sectional 
home and household attributes obtained from 
Eversource and Experian.1

We drop households with outlier values of 
home square footage and number of rooms as 
well as those enrolled in multiple HER waves or 
owning multiple properties. We further limit our 
sample to those households for which at least 12 
months of  preexperiment data and 12 months 
of  postexperiment data are available. This 
leaves us with 902,581 households and a total 
of 35,959,282  household-monthly observations. 
For the causal forest, we fill in missing values 
of household characteristics using multiple 
imputation. Details on the multiple imputation 
procedure and summary statistics—including 
evidence of  treatment-control balance in house-
hold characteristics—are provided in Knittel 
and Stolper (2019).

B. Estimation of Average Treatment Effects

We use our  household-monthly panel 
data on electricity consumption to estimate 
 wave-specific ATEs via the following regression:

(1)  kW h it   =  α 1   +  α 2   T it   +  X i   η +   θ i   +  ω t   +  e it   .

Here,  kW h it    is electricity consumption for 
household  i  in  year-month  t . The term   T it    is 
the randomized binary treatment variable,   X i    
is a vector of household characteristics, and   θ i    
and   ω t    are vectors of household and  year-month 

1 These are home age; home value; home square footage; 
number of rooms; age of household respondent; number of 
adult residents; income; educational attainment; an index for 
“green awareness”; average baseline consumption; and indi-
cators for the presence of children,  single-family occupancy, 
owner occupancy, and  take-up of a subsidized home energy 
assessment.

fixed effects, respectively. We cluster standard 
errors by zip code. The term   α 2    is our estimate 
of wave ATE in kWh per month. To obtain a sin-
gle pooled estimate, we calculate the average of 
wave ATEs weighted by wave sample size.

C. Causal Forests

The causal forest algorithm (Athey, Tibshirani, 
and  Wager 2019) is an adaptation of random 
forests (Breiman 2001) for the measurement of 
causal effects. Random forests are themselves 
an ensemble method applied to classification 
and regression trees (Breiman et  al. 1984), 
which employ recursive partitioning to split a 
sample into subgroups that maximize heteroge-
neity across splits. A tree is a single run of recur-
sive partitioning into subgroups (or “leaves”); a 
forest is a collection of trees, where each tree 
is grown from a randomly drawn (bootstrapped) 
subsample of the data.

We implement the algorithm using the gener-
alized random forests (grf ) R package. We grow 
10,000 trees. For each one, we draw a random 
50 percent sample to use and a random subset of 
characteristics to be considered in  tree growth. 
We grow trees using “honest estimation” (Athey 
and Imbens 2016) so that the initial sample for 
each tree is split in half: one subset is used to 
grow the tree structure, and the other subset is 
used to estimate leaf ATEs.

 Within-leaf ATE estimation in the grf pack-
age is implemented as a  cross-sectional, 
 difference-in-means comparison between treat-
ment and control groups. To take advantage of 
our panel data structure, we define our depen-
dent variable as the difference between average 
monthly electricity usage in year  X  of the relevant 
HER program wave (where  X ∈ 1, 2, 3 ) and 
average usage in the year prior to wave start date. 
Additionally, and following Athey and  Wager 
(2019), we “orthogonalize” our dependent and 
treatment variables by regressing each of these 
on observable characteristics and wave fixed 
effects (weighting observations by inverse prob-
ability of treatment) and recovering the residuals 
(see Knittel and Stolper 2019 for further details).

II. Results

Figure  1 displays ATE estimates in each 
individual program wave as well as for the full 
pooled sample. The pooled ATE is −9.4 kWh 
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(per month), or −1 percent.  Wave-specific ATEs 
range in magnitude from −1.6 to −17.7 kWh. 
The pooled ATE and 12 of the 15 individual 
 program-wave ATEs are statistically significant 
at the 5 percent level or lower.

Figure 2 depicts the distribution of household 
treatment effect predictions produced by the 
causal forest. We plot separate distributions for 
each of the first three years of treatment. It is 
immediately clear from this graph that the distri-
bution of TEs is  multimodal. In year one of treat-
ment, there is a large peak centered on −10 kWh 
as well as an even larger, albeit narrower, peak 
centered on zero. This zero peak implies that a 
significant number of households don’t initially 
respond to, or perhaps even read, their HERs. 
In years two and three of treatment, both peaks 
progressively widen and shift away from zero. 
Households that initially respond by reducing 
consumption appear to learn to do more of that 
over time, but a sizable subset of the sample (18 
percent) is predicted to raise its consumption. 
The full range of predicted TEs in year three 
extends from roughly −40 to +10 kWh.

What drives all this heterogeneity? Six char-
acteristics—baseline consumption, home value, 
home square footage, the year in which a home 
was built, income, and respondent’s age—are the 
most frequently used in the forest. Among these, 
the first two are easily the most common split-
ting variables. Baseline consumption is chosen 
as the initial splitting variable in 90 percent of 

trees in which it is eligible. Home value catches 
up to baseline consumption in frequency of use 
by the fourth split level. Beyond that point, these 
two attributes are used about twice as frequently 
as the other four (20 percent of the time versus 
10 percent; see Knittel and Stolper 2019).

While frequency of use in tree growth pro-
vides some insight into the relative predictive 
power of characteristics, it does not clarify how 
these characteristics are related to TEs. To shed 
some light on these relationships, we zoom in 
on the two most  frequently used characteristics: 
baseline consumption and home value. Figure 3 
provides evidence on the relationship between 
the empirical distribution of predicted TEs and 
each of these two attributes. Each panel pres-
ents a scatterplot of individual values: the  y-axis 
measures predicted TE, and the  x-axis measures 
the attribute in question. We fit smooth, local 
polynomial functions to each scatterplot’s data.

Both panels of Figure 3 hint at the potential 
value of  nonparametric prediction methods such 
as the causal forest. Relatively simpler predictive 

Figure 1. Average Treatment Effect by Wave

Notes: Each bar measures a  wave-specific ATE. Error bars 
denote 95 percent confidence intervals. The vertical dashed 
line is the pooled ATE, measured as the average of wave 
ATEs weighted by wave sample size. CT = Connecticut; 
EMA = Eastern Massachusetts; NH = New Hampshire; 
WMA = Western Massachusetts.

Figure 2. Distribution of Predicted Treatment Effects

Notes: Each plotted distribution is a kernel density of house-
hold treatment effects in a specific year (one, two, or three) 
of HER programming. Treatment effect predictions come 
from our causal forest. The sample is fixed across years: 
only households with  nonmissing consumption in all three 
 post-years are included.
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models may miss the  nonlinearity of the rela-
tionship between treatment effect and baseline 
consumption, or they may miss the importance 
of the home value variable altogether. Panel 
A exemplifies the potential for improved pro-
gram outcomes through selective targeting on 
observable characteristics. Setting the  threshold 
for program inclusion around 800 kWh per 
month, for example, would be predicted to avoid 
nearly all boomerang effects. Meanwhile, if one 
wanted to better understand the characteristics 
of the very largest “reducers,” panel B is help-
ful; such households are confined to the very 

bottom of the home value distribution. Nobody 
with home value above $100,000 is predicted to 
reduce monthly consumption by more than 23 
kWh, while the households below that dollar 
threshold in some cases are predicted to reduce 
by  30–35 kWh.

III. Conclusion

Machine learning holds great promise as a 
tool for  high-resolution evaluation and predic-
tion. In this paper, we test that promise in the 
context of a  large-scale experiment promoting 
household energy conservation. We leverage 15 
experimental waves covering 700,000 house-
holds, in which the treatment is a periodic social 
comparison message designed to nudge house-
holds to reduce electricity consumption.

The causal forest that we estimate reveals 
several facts about TEs in this context. First, 
there is wide variation in responses to HERs. 
The overall average treatment effect is a  9 kWh 
monthly reduction in electricity consumption, 
but individual effects range from −40 to +10 
kWh. Second, some households reduce more 
over time, while others tend toward increases 
in consumption. Third, baseline consumption 
and home value are the household character-
istics most frequently used to grow the forest. 
Altogether, these facts illustrate the potential for 
improved targeting and tailoring of treatment 
through machine learning.
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