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USING  MACHINE  LEARNING  TO  TARGET  TREATMENT:  

THE  CASE  OF  HOUSEHOLD  ENERGY  USE∗

Christopher R. Knittel and Samuel Stolper 

We test the ability of causal forests to improve, through selective targeting, the effectiveness of a randomised 
program providing repeated behavioural nudges towards household energy conservation. The average treat- 
ment effect of the program is a monthly electricity reduction of 9 kilowatt hours (kWh), but the full distribution 
of predicted reductions ranges from roughly 1 to 33 kWh. Pre-treatment electricity consumption and home 
value are the strongest predictors of differential treatment effects. In a pair of targeting exercises, use of the 
causal forest increases social net benefits of the nudge program by a factor of 3–5 relative to the status quo. 
Using models calibrated with earlier program waves to choose households to target in later ones, we estimate 
that the forest produces more benefits than five other alternative predictive models. Bootstrapping to generate 
confidence intervals, we find the forest’s advantage to be statistically significant relative to some, but not all, 
of these alternatives. 
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he rise of randomised controlled trials (RCTs) in economics has produced a wealth of evidence
n the average causal effect of many social and private-sector programs. 1 Concurrent with the
ise of RCTs to evaluate programs, following the seminal work of Thaler and Sunstein ( 2008 ),
here has a been a large increase in the use of ‘nudges’ to move behaviour in welfare-enhancing
ays; 2 DellaVigna and Linos ( 2022 ) reported that, worldwide, more than 200 government teams

re devoted to using behavioural science to improve government programs and outcomes. Yet the
nterventions used by these agencies are not costless and often have divergent impacts across the
reated population. Understanding how different subgroups respond to a given treatment has the
otential to unlock large increases in program effectiveness by allowing for improved targeting
f the existing treatment (that is, identifying whom to treat) as well as improved design of the
reatment itself (e.g., tailoring treatment for specific subgroups). 

Machine learning (ML) methods are an attractive option for estimating heterogeneous
reatment effects (Athey and Imbens, 2019 ). They offer disciplined ways to search non-
arametrically for heterogeneity, as well as strategies for minimising overfitting, and thus
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aximising out-of-sample predictive power. There is an active body of research on the design
f ML algorithms for causal inference (e.g., Imai and Ratkovic, 2013 ; Wager and Athey, 2018 ),
rogram evaluation (e.g., Knaus, 2022 ; Chernozhukov et al. , 2023 ) and optimal targeting (e.g.,
itagawa and Tetenov, 2018 ; Athey and Wager, 2021 ), and empiricists have quickly found
se for these tools across a wide variety of settings (e.g., Kleinberg et al. , 2018 ; Allcott and
essler, 2019 ; Deryugina et al. , 2019 ). Tree-based methods (Breiman et al. , 1984 ; Breiman,
001 )—in which a sample is repeatedly split into subsets, or ‘leaves’ on a tree—are one class of
L algorithms in which significant progress has been made: researchers have adapted existing
ethods for causal estimation of conditional average treatment effects (CATEs) via causal

rees (Athey and Imbens, 2016 ) and causal forests (Wager and Athey, 2018 ); empirical studies
ncreasingly leverage the causal forest in program evaluation (Davis and Heller, 2020 ; Gulyas
nd Pytka, 2020 ; Knittel and Stolper, 2021 ; Ellickson et al. , 2023 ). 

In this paper, we apply the causal forest algorithm to evaluate a series of large-scale randomised
xperiments in household energy use. We use the causal forest to predict treatment effects among
00,000 households and investigate the relationship between treatment effects and household
ttributes. To illustrate the practical value of forest-derived CATEs, we estimate the welfare
ains from selective targeting of treatment to maximise a social objective function. We compare
he targeting performance of the causal forest to that of the status quo (i.e., actual) treatment
ssignment, as well as a lasso model and four non-machine-learning, regression-based predictive
odels of differing complexities. 
Our results contribute to the growing empirical literature on the use of machine learning to

arget treatment, which features applications to (for example) government tax rebates (Andini
t al. , 2018 ), marketing (Ascarza, 2018 ) and fundraising (Cagala et al. , 2021 ) communications,
nd programs related to household energy use (Gerarden and Yang, 2023 ; Christensen et al. ,
024 ). To this literature, we add a case study of causal forests, applied to a large- N experiment in
udges to conserve energy. Understanding the effectiveness of behavioural interventions to reduce
nergy consumption is also of independent interest. Electricity and heating account for roughly a
hird of global carbon emissions (World Resources Institute, 2022 ), and many expect electricity
se to increase considerably through the electrification of transportation, heating and cooking.
olicymakers are, therefore, looking for potentially cost-effective ways to reduce electricity and
eating demand. 

Our empirical setting is the retail electricity service territory of Eversource, the largest electric
tility in New England. Eversource’s flagship behavioural energy efficiency product is the Home
nergy Report (HER), a short, regular mailing that compares a customer’s electricity (and natural
as) consumption to that of similar, nearby households and provides information on ways to save
nergy. Since 2011, the company has been experimentally rolling out HER programming in
aves. Our program evaluation spans fifteen experimental waves covering 902,581 Eversource

esidential customers. We observe monthly household electricity consumption from 2013–18 and
ross-sectional characteristics pertaining to homes and their occupants. This context is especially
ipe for estimating heterogeneous treatment effects for three reasons. First, the large overall
ample size available provides greater statistical power than is normal in RCTs. Second, intuition
nd empirical evidence suggest that HERs induce various behavioural responses (Allcott, 2011 ;
osta and Kahn, 2013 ). And third, the roll-out of the experiments across both time and geography
rovides an opportunity to test the external validity of the methods. 
© The Author(s) 2025.
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Our central estimate of the pooled average treatment effect (ATE) across all HER program
aves—which we estimate via panel regression—is a reduction in monthly electricity usage
f 9 kilowatt hours (kWh) or 1%. This ATE is consistent with the lower end of the range
f existing estimates (Allcott, 2011 ; 2015 Ayres et al. , 2013 ). However, the pooled average
asks heterogeneity across waves and over time because sample makeup varies across waves

nd the household response to HERs evolves with repetition, respectively. Our event study of
versource’s HER program shows a steady increase in treatment-driven energy conservation

hroughout program year one. There is no evidence of attenuation of program impacts in years
wo and three; if anything, the reductions in electricity consumption continue to increase. The
ear-three pooled ATE in our sample is −14 kWh, or −1.5%. 

Our causal forest yields an estimated range of household treatment effects of roughly −1 to −33
Wh per month, and the whole treatment effect distribution shifts leftwards (that is, downwards)
ach successive year. Many households respond by increasing their energy use reductions over
ime; at the same time, many households have persistently low-magnitude treatment effects. The

ost commonly used household attributes in the forest are measures of absolute baseline (that is,
re-treatment) consumption, relative baseline consumption (a proxy for the social comparison
hat each treated household receives) and home value. This suggests that the distribution of
ouseholds’ predictions is caused by both effect heterogeneity and treatment heterogeneity
through the social comparison). We estimate non-parametric group average treatment effects
Knaus, 2022 ) and conduct a classification analysis (CLAN; Chernozhukov et al. , 2023 ) to better
nderstand how attributes differ across the treatment effect distribution. In particular, we find
hat the size of the treatment effect (i.e., reduction) is monotonically increasing in both absolute
nd relative electricity consumption. 

In our targeting exercise, we train a predictive model on one subsample of households and use
t to assign treatment in another, held-out subsample, with the rule of only sending reports to
hose households for which predicted social benefits exceed the marginal cost of sending reports.

e then estimate actual social net benefits in this group targeted for treatment, bootstrapping
o generate confidence intervals. We ‘horse race’ six predictive models—the causal forest, a
asso and four regression-based alternatives—so that we are able to, not only gauge how the
orest performs relative to the status quo treatment assignment, but also how the forest performs
elative to computationally simpler options. And we run the whole exercise twice—once assessing
argeting in a randomly drawn hold-out subsample and a second time training the model on
hronologically earlier experimental waves and assessing targeting in later waves with disparate
ousehold attributes. 

In our primary specifications of the targeting exercise, the forest produces three to five times
he social net benefits of the status quo treatment assignment. It also outperforms each of the
ve alternative predictive models regardless of whether we train on a random sample or split
y wave start date. However, not all of these differences are statistically significant. When we
plit randomly, several of the differences are economically significant, and the forest’s gains
elative to the lasso and the most complicated regression model are statistically significant (in
he latter case, marginally so); when we split by wave start date, the forest’s gains are statistically
ignificant relative to the three more complex regression models. The simplest regression-based
redictive model of treatment effects, which depends only on absolute baseline consumption, is
ompetitive with the forest across all our targeting exercises—consistent with the conventional
isdom that baseline consumption is a major determinant of HER treatment effects. In aggregate,

he lasso is the second-best performing alternative model. Put together, our results suggest that
The Author(s) 2025.



2380 the economic journal [november

t  

m  

b  

c  

o

1

1

T  

e  

f  

s  

i  

c  

i  

n  

t  

a  

i  

e
 

e  

t  

(  

e  

m  

(  

o
 

c  

r  

r  

e  

t  

b  

e  

o
 

e

l

b
i

D
ow

nloaded from
 https://academ

ic.oup.com
/ej/article/135/672/2377/8137873 by U

niversity of M
ichigan user on 24 O

ctober 2
aking active steps to address overfitting risk is important: the machine learning (forest and lasso)
odels and the baseline-consumption model—which mitigate overfitting algorithmically and

y manually choosing a (very) sparse model, respectively—separate themselves from the more
omplex regression models in the chronological targeting exercise, which is the more difficult
ut-of-sample prediction test. 

. Empirical Context 

.1. Home Energy Reports 

he HER was developed by Opower and rolled out via randomised control trials in participating
lectric utility service territories beginning in 2008. The initial motivation for the reports came
rom a field experiment in San Marcos, CA carried out by Schultz et al. ( 2007 ), who found
ocial norm messaging to be effective in reducing home energy consumption. The Opower HER
s characterised by two components. The first is information about absolute and relative energy
onsumption. Usually, the HER lists a household’s consumption in the last month and compares
t (numerically and graphically) to a sample of similar, nearby households. In the context of social
orm theory, peer-rank information can serve as a non-financial incentive to ‘nudge’ individuals
owards socially desirable behaviour. By providing a relevant reference point, households are
ble to compare their behaviour to that of others when no other social standard is available,
nducing convergence towards the displayed social norm (Festinger, 1954 ). 3 See Figure 1 for an
xample Eversource HER. 

The second component of the HER is a set of action steps—suggestions for how to conserve
nergy, both through changes to a household’s stock of energy-using durables and changes in
he use of that capital stock. Action steps can be made accessible through a customer portal
as in Figure 1 ), or they can be displayed directly in the report. Reports are generally sent out
ither monthly or quarterly. Historically, the great majority of HERs have been delivered by
ail in hard-copy form, but Eversource has experimented with email HERs. Customers can and

infrequently) do opt out of the HER program, but it is unclear how many households are aware
f the opportunity to do so. 

There are several potential reasons why an electric utility may choose to send HERs to its
ustomers. Perhaps the most frequently discussed reason is compliance with energy efficiency
esource standards, which, in thirty-three states (National Conference of State Legislatures, 2021 ),
equires utilities achieve a certain amount of new cost savings through energy efficiency measures
very year. HERs may provide a cost-effective way to comply with such standards. Another reason
o send HERs is to improve customer satisfaction by keeping households informed about their
ill and ways to potentially reduce it. Research on HER impacts has, to date, focused almost
xclusively on energy consumption rather than customer satisfaction, perhaps due to limitations
n the latter’s data availability. 

Allcott ( 2011 ) studied the electricity usage impacts of the first wave of Opower experiments and
stimated a short-run ATE of −2.0% (that is, a 2% monthly reduction in electricity consumption). 4 
© The Author(s) 2025.

3 The algorithm that identifies ‘similar’ households is an Opower trade secret, but we believe that it is a function of at 
east home location and home size. 

4 In the context of Allcott ( 2011 ), 2.0% is equivalent to 0.62 kWh per day. A reduction of this magnitude could have 
een achieved, for example, by turning off a typical air conditioner for 37 minutes per day, or by switching off a 60 W 

ncandescent light bulb for 10.4 hours per day. 
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Fig. 1. Eversource Home Energy Report. 
Source: Eversource. 
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yres et al. ( 2013 ) concurrently studied the effects of two other Opower interventions and found
TEs of −2.1% and −1.2%, respectively (the latter is an aggregate estimate for home electricity
nd natural gas usage). Allcott ( 2015 ) identified ‘site selection bias’ in HER experiments: using
esults from the first ten Opower experiments to predict results in the next hundred experiments
ignificantly overstates program effectiveness. Allcott and Rogers ( 2014 ) studied the long-run
mpacts of HERs and shed light on the time pattern of a household response. Initially, treated
ouseholds reduce energy use right after receiving a report, but slide back upwards over time
ntil receiving the next report. This ‘action and backsliding’ pattern dissipates over time, but the
onthly conservation effect continues rising even after two years of repeated treatment. Finally,

he conservation effect is relatively persistent after reports are stopped: the decay rate of the effect
s 10%–20% per year. 

Several studies document heterogeneous effects of HERs on savings and well-being. Allcott
 2011 ) found that the treatment effect varies with baseline electricity consumption: the top decile
as an ATE of 6.3%, while the bottom decile’s ATE is statistically indistinguishable from zero.
yres et al. ( 2013 ) similarly found a positive correlation between baseline usage and HER-

nduced reductions in usage. Costa and Kahn ( 2013 ) showed that politically liberal households
educe energy usage in response to HERs two to four times more than politically conservative
nes. Byrne et al. ( 2018 ) identified boomerang effects—that is, unintended positive treatment
The Author(s) 2025.
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Table 1. Summary of Experimental Home Energy Report Program Waves. 

Date Location Type N % Treatment 

February 2014 New Hampshire Base 42,709 50.0 
February 2014 Western Massachusetts Base 95,455 91.9 
April 2014 Connecticut E-Delivery 85,360 83.3 
April 2014 Connecticut HEA 11,883 66.4 
April 2014 Connecticut Base 199,802 91.7 
April 2014 Eastern Massachusetts Base 49,610 88.4 
January 2015 Western Massachusetts Base 24,837 71.1 
April 2015 New Hampshire Base 32,571 71.5 
December 2015 Western Massachusetts Base 11,272 86.5 
February 2016 Connecticut Base 137,896 88.1 
February 2016 Connecticut Low-Income 16,981 53.0 
February 2016 Eastern Massachusetts Base 59,892 76.5 
March 2016 Connecticut Base 17,395 80.1 
January 2017 Connecticut Base 69,517 76.0 
January 2017 Eastern Massachusetts Base 69,517 62.8 

Total 902,581 81.8 

Notes: ‘Base’ indicates the standard Opower treatment. ‘E-Delivery’ indicates an email-only treatment. ‘HEA’ indicates 
a sample of participants who have previously received a home energy assessment, aimed at providing recommendations 
on how to save energy. ‘Low-Income’ indicates a lower-income sample of participants. 
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ffects—among low baseline energy users as well as households that overestimate their baseline
nergy use relative to others. Allcott and Kessler ( 2019 ) elicited willingness to pay for HERs
nd identified significant heterogeneity across households. Lastly, Gerarden and Yang ( 2023 )
stimated significant social benefits of targeting HERs using empirical welfare maximisation
Kitagawa and Tetenov, 2018 ). Our work is most similar to Gerarden and Yang ( 2023 ), but is
ifferentiated by its focus on the causal forest, its exploration of the predictors of differential
reatment effects and the setup of its targeting exercise. 

.2. Eversource Experiments 

versource’s service territory is divided into four regions: Eastern Massachusetts, Western
assachusetts, Connecticut and New Hampshire. Some of its customers receive both electric

nd natural gas service, while others receive only one or the other; Figure 2 maps the coverage
f these services. 

Opower has run twenty-six waves of home energy report experiments in the Eversource electric
ervice area, with the earliest beginning in February 2011 and the latest beginning in January
017. We consider fifteen of these, dropping eleven waves that either (a) begin outside our five-
ear period of observation for household energy consumption, (b) target natural gas customers or
c) target households that have just moved into new homes (who, in these waves, receive different
ERs that additionally vary over time). Table 1 details the timing, location and size of each
ave that we use in our analysis. Twelve of these waves use the standard, or ‘base’, Eversource

reatment (as shown in Figure 1 ): a periodic, hard-copy mailed report showing the customer’s
lectricity consumption last month, average consumption among ‘similar’ nearby households and
 textual comparison of the two. Three program waves deviate from this standard treatment: one
f these replaces hard-copy reports with emailed ones, another exclusively covers households
hat have previously received ‘home energy assessments’ aimed at providing recommendations
© The Author(s) 2025.
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Fig. 2. Eversource Service Territory Map. 
Source: Eversource. 
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n how to save energy and the third targets households with, on average, significantly lower
ncomes than the norm for Opower. All waves use either a monthly or quarterly report frequency.

According to correspondence with Eversource, Opower strategically targets households with
igh baseline consumption for HER experimental participation. Indeed, our data confirm that
verage electricity consumption is higher among households involved in an experiment than
mong non-participating Eversource electricity customers. Table 1 also shows that the treatment-
ontrol ratio varies significantly across waves and is always at or above 50:50. Opower chose
uch high treatment probabilities in order to meet its electricity savings goals while keeping the
umber of waves low. 
The Author(s) 2025.
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.3. Data 

e combine three types of data in order to estimate the impacts of home energy reports: house-
old monthly electricity consumption from Eversource; treatment assignment and timing of
versource’s HER experiments; and cross-sectional demographic and socioeconomic character-

stics of participants. First, we obtain monthly electricity consumption totals (in kilowatt hours)
or the universe of Eversource customer accounts with residential electricity service in the period
rom January 2013 to May 2018. After removing accounts with more than one observation (either
ecause the account is associated with multiple properties, or because there are irreconcilable
uplicates), we are left with 2,788,369 Eversource accounts (‘households’). To these, we merge in
reatment assignment data for the fifteen waves that we study. We drop the 2.6% of participating
ouseholds that are enrolled in multiple Opower experiments, as these households contaminate
he pure treatment-versus-control comparison. 

We combine our consumption and treatment assignment data with cross-sectional home and
ousehold predicted characteristics from Experian, via Eversource. We include fourteen charac-
eristics in our analysis. To capture home attributes, we use home age, value and square footage,
s well as the number of rooms. To describe families, we use the age of the household respon-
ent, the number of adult residents and an indicator for the presence of children. We further
nclude indicators for single-family occupancy and owner occupancy. Finally, we include aver-
ge baseline consumption, income, educational attainment, an index for ‘green awareness’ and
n indicator for take-up of a subsidised home energy assessment. After dropping households
ith outlier values of home square footage or number of rooms, we are left with a main sample
f 902,581 households. We feed this sample through a multiple imputation algorithm in order to
ll in missing values of the home and household characteristics (see Online Appendix C.1 for
etails on this procedure). 

Table 2 summarises the fourteen characteristics and tests for balance across treatment and
ontrol observations in our pooled analysis sample. Column (1) presents the full-sample mean
f each characteristic (with the SD in parentheses). Column (2) displays the treatment-control
ifference in means (and the SE in parentheses) for each characteristic, as the coefficient from a
egression of the particular characteristic on the treatment binary variable and a set of wave fixed
ffects, with robust SEs. One of the treatment-control differences is significant, at the 5% level;
e view this as a typical result of conducting fourteen hypothesis tests. We present wave-specific
alance tables in Online Appendix A . 

. Empirical Strategy 

e follow much of the existing literature on Home Energy Reports and begin by using difference-
n-differences regressions, leveraging random assignment of households into treatment and con-
rol groups, to estimate average HER program effects on electricity consumption. To test for
eterogeneity in these effects and investigate the role of household characteristics in predict-
ng them, we use the causal forest algorithm, implemented with the generalised random forest
ackage of Tibshirani et al. ( 2024 ). This algorithm yields a distribution of predicted individual
ousehold impacts on consumption, as well as information about the use of each characteristic
n growing the forest from which those impacts are predicted. 
© The Author(s) 2025.

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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Table 2. Treatment-Control Balance. 

Sample-wide 
mean 

Treatment-control 
difference in means 

(1) (2) 

Baseline consumption (kWh) 812.161 0.010 
(400.539) (0.836) 

Home value ($) 378,215.758 −1,049.013 
(393,255.443) (1,002.546) 

Home square footage 19.689 −0.019 
(11.857) (0.035) 

Number of rooms in home 7.138 −0.007 
(2.226) (0.006) 

Year home built (1–5) 1,968.060 0.038 
(23.536) (0.065) 

Single-family occupancy ( = 1) 0.808 −0.001 
(0.394) (0.001) 

Renter ( = 1) 0.164 0.002∗∗
(0.370) (0.001) 

Annual income ($) 97,781.877 −199.526 
(68,372.743) (186.745) 

Education (1–5) 3.199 −0.005 
(1.245) (0.003) 

GreenAware score (1–4) 2.163 −0.004 
(1.134) (0.003) 

Number of adults 2.375 −0.002 
(1.347) (0.004) 

Child in home ( = 1) 0.487 −0.001 
(0.500) (0.001) 

Participated in energy audit ( = 1) 0.341 0.002 
(0.474) (0.001) 

Age 55.762 0.030 
(14.927) (0.042) 

Notes: Column (1) displays the full-sample mean and (in parentheses) SD of each listed household characteristic. 
Column (2) displays differences in means and (in parentheses) corresponding SEs. Column (2) estimates come from 

linear regression of each characteristic on treatment status, with wave fixed effects and robust SEs. ∗∗ p < . 05 . 
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.1. Estimation of Average Treatment Effects 

e use our household-monthly panel data on electricity consumption to estimate wave average
reatment effects via the regression 

kW hit = α1 + α2 Tit + Xi η + θi + ωt + eit , (1)

here kW hit is electricity consumption for household i in year-month t , Tit is the binary treatment
ariable taking a value of one for treated households from the program start date onward, Xi is
 vector of household characteristics, and θi and ωt are household and year-month fixed effects,
espectively. Our primary specification for the ATE is thus a difference-in-differences setup,
hich is standard in the literature evaluating randomised home energy reports (Allcott, 2011 ;
yres et al. , 2013 ; Costa and Kahn, 2013 ; Gerarden and Yang, 2023 ); we also provide difference-

n-means ATE estimates in Online Appendix B . We cluster SEs by zip code. Here, α2 is the
oefficient of interest—the average treatment effect in kilowatt hours per month. We calculate a
pooled’ ATE as the average of all wave ATEs, weighted by wave sample size. 
The Author(s) 2025.

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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With variation in the timing of wave start dates, we use an event-study model to investigate
he evolution of HER impacts over time. The estimating equation is 

k W hiwt = β1 +
36 ∑ 

j=−12 

τ j D j 
iwt + Xi η + θi + ωwt + eiwt . (2) 

ere, we use all waves simultaneously to estimate a pooled ATE for each period j relative
o the event of interest—the beginning of treatment in the relevant wave. Variable D j 

wt is a
inary variable equalling one if an observation is in wave w , j months after (or before) HER
ailings begin in that wave, where j ∈ [ −12 , 36] . 5 We omit D−1 

wt , corresponding to the month
mmediately preceding the start of HER mailings, from the estimating equation, so that all
oefficients are interpretable as the monthly ATE relative to this month. We employ household
nd wave-year-month fixed effects and again cluster SEs at the zip code level. 

.2. Causal Forests 

he causal forest algorithm (Athey et al. , 2019 ) is an adaptation of random forests (Breiman
t al. , 1984 ) for the measurement of causal effects. Random forests are themselves an ensemble
ethod applied to classification and regression trees (CARTs; Breiman, 2001 ), which employ

ecursive partitioning to split a sample into subgroups that maximise heterogeneity across splits.
 tree is a single run of recursive partitioning; a forest is an ensemble of trees, where each tree

s grown from a randomly drawn subsample of the data. 
CARTs were originally developed for prediction of outcomes ˆ y as a non-parametric function

f covariates. Athey and Imbens ( 2016 ) adapted CARTs for prediction of treatment effects ˆ β,
nabling the construction of valid confidence intervals for these effects. Wager and Athey ( 2018 )
id the same for random forests, establishing the consistency and asymptotic normality of their
causal’ forest estimators. Athey et al. ( 2019 ) nested causal forests in a ‘generalised random
orest’ framework; we construct a causal forest using their generalised random forest ( grf ) R
ackage (Tibshirani et al. , 2024 ). 

We observe outcomes Yi , treatment assignment Wi and household attributes Xi . For a single
ree, we start by drawing a random subsample, without replacement, from the full cross section of
power households. The algorithm takes this subsample as its ‘root node’ and splits it into two

hild nodes; the split is defined by some threshold value of one of the household attributes (in
Xi ). The splitting rule used in the grf package favours splits that increase the heterogeneity of its
verage treatment effects as fast as possible (Athey et al. , 2019 ). More formally, the objective is
o find the single value of a single variable at which splitting the sample minimises (an indicator
f) in-sample prediction error in the child nodes (Athey et al. , 2019 ). Child nodes are then split
ecursively to form a tree, stopping when there are fewer than a threshold number of households
n a given node. The terminal nodes are called ‘leaves’. 

The causal forest is a collection of these trees, where each tree has been grown using a new
andomly drawn subsample, as well as a new random subset of the splitting variables ( Xi ). From
hese trees, we can construct weights αi ( x) that measure how often the i th household falls in the
ame leaf as x—what Athey et al. ( 2019 ) called ‘the forest-based adaptive neighbourhood of x ’.
© The Author(s) 2025.

5 We also estimate wave-specific event studies and calculate pooled time-specific coefficients in the same fashion as 
escribed for the full-period ATE (that is, as averages weighted by wave sample size). The resulting event-study plot is 
ualitatively the same as what we show from our main analysis in Section 3 below. 
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he weights are then applied to the estimation of treatment effects τ : 

ˆ τ = (1 /n )
∑ n 

i= 1 αi ( x)[ Yi − ˆ m ( Xi )][ Wi − ˆ e ( Xi )] 

(1 /n )
∑ n 

i= 1 [ Wi − ˆ e ( Xi )]2 
(3)

ith ˆ m ( Xi ) an estimated expectation of Yi conditional on Xi , and ˆ e ( Xi ) the propensity score (the
ausal forest function labels these ‘Y.hat’ and ‘W.hat’, respectively). Athey and Wager ( 2019 )
escribed the estimation procedure for both the weights αi ( x) and treatment effects τ in further
etail. 

We grow a forest consisting of 10,000 trees. In our causal forest, each tree is grown with a
ifferent random 50% subsample of households and a different subset of available characteristics. 6 

e employ ‘honesty’ in training causal forests: after the initial 50% subsample is drawn for a
iven tree, that subsample is split once more in half, and one half is used to grow the tree structure
hile the other is held out to then repopulate the leaves after tree growth (and define the weights

i ( x) ). Athey and Imbens ( 2016 ) introduced this practice in tree growth as a way to reduce bias
nd counteract the overstatement of goodness of fit at deeper levels of a tree. 

The whole tree-specific procedure can thus be represented as follows. 

 1 ) Randomly draw ( i ) a 50% sample of households and ( ii ) a subset of available characteristics.
 2 ) Randomly split the sample in half, creating a ‘training set’ Str and an ‘estimation’ set Sest . 
 3 ) Using Str , grow a tree. 
 4 ) Match households in Sest to leaves of the tree, according to observed characteristics. 

After all trees are grown, adaptive weights can be calculated, and treatment effects estimated
ccording to ( 3 ). 

Several additional nuisance parameter values must be chosen. By default, grf first estimates
ˆ  ( Xi ) and ˆ e ( Xi ) via a regression forest and makes out-of-bag predictions, which are then used
o grow the main causal forest. We retain this default for ˆ m ( Xi ) , but, for ˆ e ( Xi ) , we use household
 ’s wave-specific treatment fraction, which is the true (‘oracle’) propensity score (Athey and

ager, 2021 ). We also choose the default value—0.05—for the ‘maximum split imbalance’,
hich stipulates a minimum relative size of each child node in a potential split of some parent
ode (the option accepts values in [0, 0.25]). 

The parameter ‘minimum node size’ sets the minimum number of both treatment and control
bservations in a leaf required to continue splitting it. The default value is 5, but we decline
o use that value because treatment assignment in our context is skewed (in aggregate, 83%
f households are treated), and we do not want forest leaves with as little as 1 or 0 control
bservations. Instead, we tune this parameter by growing a set of forests with variable minimum
ode size between 500 and 10,000 and choosing the minimum node size that minimises R-loss
Nie and Wager, 2021 ). We conduct this tuning exercise three times: once for the forest that
ses all households (with non-missing input data), and once each for the two forests grown as
art of our targeting exercises, which hold out some households entirely from forest growth. We
resent the R-loss results from our tuning process in Online Appendix Figure B1 ; they indicate a
inimum node size of 1,000 for the all-household forest, and 3,000 for the first targeting forest

nd 500 for the second targeting forest. 7 
The Author(s) 2025.

6 The number of characteristics chosen varies by tree according to a draw from a Poisson distribution. 
7 We do not use the ‘cluster’ option in our preferred forests, but we do grow a forest with clustering and present results 

or comparison in Online Appendix Figure B2 ; see the next section for further reference. 

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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The grf package is set up to use cross-sectional data on { Yi , Wi , Xi } . To take advantage of our
anel data structure, we define Yi as the difference between average monthly electricity usage
n year t of the relevant HER program wave (where t ∈ 1 , 2 , 3 ) and average usage in the year
rior to the wave start date. Variable Wi continues to be the binary treatment variable. To the Xi 

ector we add one more variable, which is meant to capture variation in the treatment itself (that
s, not just in the treatment effect ). It is a proxy for the social comparison one receives in a Home
nergy Report. We do not observe the exact social comparison that each household receives in
ach month or quarter, but we can develop a proxy inspired by the fact that Opower’s algorithm
ries to construct comparison groups from similar households in similar locations. 

To be precise, we observe 495,136 households with non-missing Yi in the year prior to as
ell as the two years following their wave’s start date. We draw a random 50% of this sample,

tratified by zip code, and use that subsample to estimate zip code–specific regressions of baseline
onsumption on home value, home square footage, the number of rooms and the year in which
he home was built. Then we set this ‘training’ sample aside and predict, in the remaining 50%
ample, each household’s residual baseline consumption according to the calibrated regression
odel for its zip code. This residual reveals how much larger or smaller a given household’s

aseline consumption is relative to the average household with those attributes in its zip code—a
roxy for the actual social comparison. We include the residual as an element of X in forest
rowth, and we use as forest input data only those 247,394 households held out of the zip code
odel prediction. 

. Treatment Effect Estimates 

.1. Average Treatment Effects 

igure 3 displays ATE estimates in each individual Opower wave as well as for the full, pooled
ample. These results correspond to ( 1 ). The pooled ATE is −9.35 kWh (per month), or −1%.

hile this is somewhat lower than the ATEs found in earlier Opower experiments (Allcott, 2011 ;
yres et al. , 2013 ; Costa and Kahn, 2013 ), the difference may be explained at least in part by

site selection bias’ (Allcott, 2015 ): earlier Opower experiments systematically targeted areas and
ouseholds with larger potential to reduce consumption. Wave-specific ATEs range in magnitude
rom −1.6 to −17.7 kWh. Nine of the fifteen individual program-wave ATEs are statistically
ignificant at the 5% level or lower. 8 

There is an apparent negative trend in ATE estimates over time in Figure 3 , which is ordered by
ave start date, consistent with Allcott ( 2015 ). Differences in the length of the post-period may
e a part of the explanation. Figure 4 —generated through estimation of ( 2 )—sheds light on how
he consumption impact of HERs evolves over time, on average. In the twelve months prior to
he program start date, the point estimate is never statistically different from zero. In the first two
onths of the treatment (months zero and one of the treatment), there is no drop in consumption.
ut, for the next four months, there is a steady, steep downward trend in average consumption.
onth-specific point estimates are statistically significant beginning in month four. The ATE

ontinues to steadily rise in years two and three. In sum, households take time to ramp up their
esponse to reports, but continue changing behaviour into at least the third year of treatment. 
© The Author(s) 2025.

8 In Online Appendix Table B1 , we tabulate difference-in-means estimates of pooled average treatment effect by year. 
he estimate rises each year, from −6.43 kWh, to −11.46 and to −14.39 by year three. Each year-specific ATE estimate 

s statistically significant at the 1% level. 

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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Fig. 3. Average Treatment Effects, by Wave: Consumption. 
Notes: The y axis denotes a specific wave (waves are ordered by start date), and the x axis measures the 

ATE in kilowatt hours. The vertical dashed line denotes the weighted pooled average of all wave-specific 
ATEs, with weights equal to the wave sample size. Error bars denote 95% confidence intervals. CT, 

Connecticut; EMA, Eastern Massachusetts; NH, New Hampshire; WMA, Western Massachusetts. All 
effects are estimated via a panel difference-in-differences regression, using ( 1 ) and as described in 

Section 2.1 . 
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.2. Conditional Average Treatment Effects 

igure 5 depicts the distribution of household treatment effect predictions produced by the
ausal forest. We plot separate distributions for each of the first three years of treatment. Each
istribution has the same general shape, with a single prominent peak and a left skew. Each year,
The Author(s) 2025.
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consumption in all three post-years are included. Treatment effect predictions come from our causal forest 
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he distribution shifts to the left, with the peak getting smaller and the left tail getting thicker.
or example, in year one only 0.2% of households are predicted to reduce consumption by
0 kWh or more, but by year three that number rises to 15.4%. ATEs calculated by the grf
unction are −7.26 kWh in post-year one, −10.29 in post-year two and −12.5 in post-year three.
he full range of predicted treatment effects extends from roughly −1 to −33 kWh. 9 

What predicts heterogeneity in treatment effects? Figure 6 plots the frequency of selected
haracteristics’ use as a splitting variable in the forest, conditional on being (randomly drawn to
e) available in splitting. The six characteristics included in this figure—our social comparison
© The Author(s) 2025.

9 Online Appendix Figure B2 shows year-specific treatment effect distributions from a forest with zip code–level 
lustering. The results are qualitatively indistinguishable from those of Figure 5 . 

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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The dependent variable in the forest is average consumption in post-year two minus average consumption 
in the first pre-year. See Section 2.2 for further implementation details. 
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ariable, baseline consumption, home value, home square footage, the year in which a home was
uilt and the respondent’s age—are the most frequently used. The social comparison variable is
hosen as the initial splitting variable in 52% of trees in which it is eligible. Baseline consumption
s chosen about 34% of the time. By the third level of the tree, these two attributes have the same
requency of use—just above 20%—and they remain in the 15%–22% range for the duration of
ree growth. A third attribute, home value, is also used about 16% of the time throughout tree
rowth. We note, however, that these results may be sensitive to the addition of a new predictor
hat is correlated with one of the most commonly used existing ones. 

While frequency of use in tree growth provides some insight into the relative predictive
ower of characteristics, it does not clarify how these characteristics are related to treatment
ffects. To shed some light on these relationships, we provide two further analyses. The first is
 classification analysis (CLAN; Chernozhukov et al. , 2023 ), which is a comparison of average
haracteristics among those with the largest treatment effects versus those with the smallest,
s estimated by the causal forest. We follow the implementation described by Deryugina et al.
 2019 ) to generate treatment effect predictions, which we order and group into quintiles, and
The Author(s) 2025.
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Table 3. Characteristics of High versus Low Treatment Effect Households. 

Top 20% Bottom 20% Difference 
(1) (2) (3) 

Social comparison (kWh) 353.02 −150.51 503.52∗∗∗
5.58 

Baseline consumption (kWh) 1,260.83 782.84 477.99∗∗∗
13.02 

Home value ($) 355,758.96 460,184.34 −104,425.38∗∗∗
23399.58 

Home square footage (100s) 20.62 21.04 −0.41 
0.39 

Number of rooms in home 7.26 7.28 −0.02 
0.06 

Year home built 1969.81 1967.78 2.03∗∗∗
0.43 

Single-family occupancy ( = 1) 0.86 0.91 −0.05∗∗∗
0.01 

Renter ( = 1) 0.1 0.1 −0.01 
0.01 

Annual income 102,908.33 107,962.35 −5,054.02∗
1900.25 

Education (1–5) 3.22 3.35 −0.13∗∗∗
0.03 

GreenAware score (1–4) 2.21 2.17 0.03 
0.02 

Number of adults 2.75 2.43 0.32∗∗∗
0.02 

Child in home ( = 1) 0.45 0.55 −0.10∗∗∗
0.01 

Participated in home 0.37 0.36 0.00 
energy audit 0.01 

Age 58.07 54.79 3.27∗∗∗
0.29 

Notes: Columns (1) and (2) display mean characteristics among households in the top 20% and bottom 20%, respectively, 
of the predicted treatment effect distribution. ‘Top 20%’ indicates the largest reducers (of electricity consumption); 
‘Bottom 20%’ indicates the smallest reducers (as well as any increasers). Predictions are generated through a procedure 
developed by Chernozhukov et al. ( 2023 ) and implemented by Deryugina et al. ( 2019 ); see Online Appendix C.2 for 
details. Column (3) displays differences between columns (1) and (2), along with SEs clustered by zip code in parentheses, 
estimated via regression of each characteristic separately on a binary variable equalling one if a household is in the top 
quintile. ∗ p < . 1 , ∗∗∗ p < . 01 . 
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hen measure differences in mean characteristics between the top quintile and bottom quintile
we describe the procedure in further detail in Online Appendix C.2 ). 

We present the results in Table 3 . The ‘top-20%’ reducers in response to treatment have, on
verage, higher absolute baseline consumption as well as relative consumption (as captured by
ur social comparison proxy), in comparison to the bottom 20%. Households in the top 20% also
ave smaller average home values and incomes, and they tend to have more adults, but are less
ikely to have children. Account holders in the top 20% tend to be older, but with fewer years of
ducation. Lastly, top-20% homes tend to be newer, but less likely to be single-family occupancy.

In our second analysis of relationships between household attributes and treatment effect
rediction, we construct ‘heterogeneity curves’ non-parametrically. To do so, we follow the pro-
edure of Knaus ( 2022 ). We use their ‘causal double machine learning’ strategy (and associated
cDML’ R package), applied to random forests, to generate treatment effect predictions. Then
e estimate spline regressions of treatment effect on a single household attribute based on the R
ackage ‘crs’ (Racine and Nie, 2024 , and again see Online Appendix C.2 for further detail on this
© The Author(s) 2025.

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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Fig. 7. Predicted Treatment Effect versus Household Type. 
Notes: The x axis measures a different household attribute in each panel: (a) the social comparison 

variable, (b) baseline consumption and (c) home value. The y axis measures the predicted treatment effect 
as a function of the relevant attribute. The solid line and confidence intervals are estimated via spline 
regression, using the causalDML R package (Knaus, 2022 ). The dashed line is a point estimate of the 

average treatment effect. The sample includes all households with non-missing consumption in the year 
prior to the program start date and each of the first three years following the program start date. See 

Online Appendix C.3 for further implementation details. 
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rocedure). In Figure 7 , we present one heterogeneity curve for each of the three most commonly
plit-upon variables: the social comparison variable, baseline consumption and home value. 

Figure 7 (a) shows a trend break around a value of zero for the social comparison residual, with
 larger positive value predicting a larger treatment-induced reduction in electricity consumption.
anel (b) shows a near-linear relationship between treatment effect and baseline consumption:

he larger the baseline, the greater the reduction in response to treatment. Panel (c) shows
reatment-induced reductions fluctuating modestly below a home value of $350,000 and, above
hat threshold, dropping steadily in home value. Put together, Figure 7 suggests that targeting
The Author(s) 2025.

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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or treatment ( i ) higher baseline consumption, ( ii ) lower home values and/or ( iii ) less favourable
ould-be social comparisons may lead to increased social benefits. 

. Selective Targeting of Treatment 

o further investigate the potential gains in program effectiveness from selective targeting, we
evelop an exercise that simulates a planner’s decisions about whom to treat going forward based
n previously observed treatment effects. There are, of course, many possible objective functions
hat a planner may seek to maximise; we focus here on maximising aggregate social net benefits
roduced by the treatment. We note, however, that equity is an important component of the true
ocial welfare function. Thus, it is important to keep in mind what might be done for those who
o not receive this particular HER treatment—for example, tailoring the treatment to make the
eports more valuable for this group, or increasing spending on other programs for this group
Reames et al. , 2018 ). 

For this exercise, we require estimates of the social net benefits produced by treating each
ousehold with home energy reports. We use the following equation for predicted annual social
et benefits: 

SN Bi = −T Ei × 12 × SMCe − MCH E R + W T Pi . (4) 

ere, T Ei is the predicted monthly treatment effect for household i , which we multiply by 12
o convert to an annual number; SMCe is the social marginal cost of electricity (which includes
oth generation costs and environmental externalities); MCH E R is the marginal cost of sending
 household HERs for one year and W T Pi is a household’s annual willingness to pay for
ERs. Treatment effect T Ei can be taken from any prediction model, such as our causal forest.
e set SMCe = $0.065 per kWh, which is the short-run estimate of Borenstein and Bushnell

 2022 ) for the trio of states in our sample in 2016, shared by the authors. We set MC = $7.00
er household-year, based on consultation with Eversource. 10 To estimate WTP for HERs, we
orrow from Allcott and Kessler ( 2019 ), who elicit WTP for HERs experimentally and report
esults from a regression of household-specific WTP on the logarithm of income, indicators
or retirement, marriage, homeownership and single-family occupancy, and homebuyer’s credit
orthiness score. We use their regression coefficients to predict household-specific WTP in
ur sample, given the characteristics of each household (we describe this in further detail in
nline Appendix C.4 ). 
With these estimates, we can then compare the predicted social benefits produced by a given

ousehold—here, the sum of its predicted WTP and the estimated social value of its predicted
lectricity savings—to the marginal cost of sending the reports. Figure 8 graphically depicts
his comparison by plotting the (reverse) cumulative distribution function (CDF) of household-
pecific, predicted social benefits in each of the first three years of HER programming alongside
he (constant) marginal cost curve. In every year, the CDF crosses the marginal cost line; that
s, there are always households whose predicted responses to HERs translate to net negative
enefits. 

Taken at face value, the graph suggests that sending only to households whose induced annual
ocial benefits exceed seven dollars would yield aggregate net benefits equivalent to the area
© The Author(s) 2025.

10 The actual social marginal cost could be below the price charged to Eversource by Opower; in Online 
ppendix Figure B4 , we replicate our main targeting exercise using a marginal cost of $3.50 per household-year. 

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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sample is fixed across years: only households with non-missing consumption in all three post-years are 
included. The line labelled ‘ MC = 7’ denotes the estimated marginal cost of sending one year’s worth of 
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etween the CDF and marginal cost curve, from the left edge of the figure to the two curves’
rossing point. However, there is no true hold-out sample in Figure 8 ; we use all households in
he growth of each forest used therein. 11 To mimic the real-life planner’s targeting challenge, we
uild a predictive model with one subset of the entire household sample and target using that
odel in another entirely different subset. Our general algorithm is as follows. 

 1 ) Split the full sample of available households into two: a training set for estimating the model,
and a test set for targeting and its evaluation. 

 2 ) Estimate a predictive model with the training sample. 
 3 ) In the test sample, predict household-level treatment effects (using the model estimated in

step (2)) and willingness to pay (using the model with parameters taken from Allcott and
Kessler, 2019 described above). 

 4 ) Calculate predicted social benefits for each household according to ( 4 ). 
The Author(s) 2025.

11 Household predictions, however, are still ‘out of bag’—that is, based only on trees grown without the use of the 
ousehold in question. 
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 5 ) Identify all test-sample households whose induced social benefits exceed marginal cost; this
is the group ‘targeted’ for treatment. 

 6) Estimate an ATE in the targeted group. 
 7) Calculate ‘actual’ aggregate social net benefits in the targeted group using ( 4 ), but replacing

each targeted household’s predicted TE with the estimated ATE from step (6). 

The causal forest is our predictive model of primary interest. 12 However, we compare it to
everal alternative model types that are simpler yet still data driven, as well as Opower’s actual
reatment assignment, to assess the relative improvement possible through machine learning.

e choose one machine learning and four regression-based alternatives to test, motivated by
onvention and prior knowledge of HERs’ impact. The machine learning alternative is a lasso
Hastie et al., 2025 ), which uses regularised regression to select variables and coefficient values
rom a set of potential variables consisting of treatment status, the X vector and all interactions
etween elements of the two. We think of the lasso as a sort of bridge between the causal forest
nd the four regression models, it being a regression-based machine learning method. 

Of the four non-ML regression-based alternatives, the first and simplest (which we denote
baseline’) is a linear model in which treatment effect varies only with baseline electricity
onsumption. The sparseness of this model means that an electric utility could estimate it without
he need for demographic, socioeconomic or home attributes, and it also may lessen the risk of
verfitting. Furthermore, baseline consumption stands out as an important predictor of treatment
ffect in our work as well as that of others before us (Allcott, 2011 ; Ayres et al. , 2013 ). Given
power’s pre-existing preference for high baseline electricity users as experimental participants,

his first model can be thought of as a formal version of what has historically been done in the field.
Each of the next three regression-based models build successively on each other. The second
odel (denoted ‘linear’) parameterises treatment effect to vary linearly with all fourteen of our

ousehold characteristics. Our third model (‘parsimonious’) builds on the second by adding
nteractions between treatment and the square of each characteristic. And, our fourth model
‘interacted’) adds, on top of that, treatment interactions with the product of each pair of charac-
eristics. Throughout this exercise, we predict treatment effects in post-year two. We describe the
ve alternative prediction models and other elements of the targeting exercise in further detail in
nline Appendix C.4 . 
In step (1) above, we try two different ways of splitting the full sample into training and

est sets. In the first, we split the full sample ( N = 247,394 ) in half randomly. This splitting rule
acilitates a test of whether the forest would be accurate in a held-out group with the same average
haracteristics; we therefore think of this first version of the exercise as a good evaluation of
ach model’s internal validity. In the second, we split the full sample by the timing of the wave
tart date; the training sample is composed of all households whose program wave started in
014 (203,248 households), and the hold-out sample is composed of those with wave start date
n 2015 or 2016 (44,146 households). By using earlier waves to predict outcomes in later waves,
e better approximate the situation in which a utility (or any other service provider) might find

tself. In particular, the average characteristics of the two groups are very different in this second
ersion of the test—Online Appendix Table B2 documents this difference. The hold-out group
s, on average, a lower absolute consumer of electricity, but a higher relative user (as given by
ur social comparison proxy). It also has larger homes and home values, but lower income. We
© The Author(s) 2025.

12 In this targeting exercise, we grow forests consisting of 1,000 trees instead of 10,000 for computational tractability: 
ne of our bootstrapping procedures requires regrowing these forests 1,000 times. 

https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data
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hus view this version of the targeting exercise as shedding light on the external validity of each
rediction method. 

Figure 9 depicts, for each of the two versions of the targeting exercise described above, the
erformance of the forest relative to each alternative model. Forest-based targeting in a random
old-out sample produces an estimated additional $2.21 in annual social net benefits (SNBs) per
sample) household relative to the Opower treatment assignment (the bottom bar in panel (a)).
his is a product of the forest yielding $2.79 in per-household benefits while the actual Opower
rogram yielded only $0.58, which represents a nearly five-fold (4.8 ×) increase in net benefits
f targeting relative to the status quo. In particular, the Opower distribution treated 102,853
ouseholds out of a total 123,698 in this exercise, while the forest finds only 66,256 worth treating
ccording to the targeting rule. This difference is the aggregate effect of the forest switching
6,537 households from treatment to control and 9,940 households from control to treatment. 

Figure 9 (a) also shows that forest performance, as a point estimate, outperforms that of the other
redictive models. The ‘baseline’ and ‘parsimonious’ models produce the second- and third-most
enefits per person, respectively; the forest outperforms the baseline model by 9.8%. ‘Linear’,
interacted’ and the lasso do worse, but all models produce well over twice the social net benefits
f the status quo Opower assignment. We follow Gerarden and Yang ( 2023 ) and bootstrap to
enerate confidence intervals on these differences; 13 these are wide for all comparisons in panel
a), but significantly different from zero in the case of Opower’s actual treatment assignment, the
asso and the ‘interacted’ model (in this last case, marginally so). 

In the version of our test where we use earlier waves to choose households to target in later ones
panel (b)), the forest continues to outperform both the Opower benchmark and all regression and
asso models in the initial targeting sample. The forest produces 2.95 times the net benefits of
power’s actual distribution in post-2014 waves and outpaces the best alternative (the baseline
odel) by 9.35%. This time, the differences between forest performance and linear, parsimonious

nd interacted model performance are statistically significant (the interacted model fails to find
ny households worth targeting), but forest performance is still indistinguishable from that of the
aseline and lasso models. A more conservative bootstrapping procedure yields slightly wider
onfidence intervals, depicted in Online Appendix Figure B3 . In addition, we find that raising the
umber of bootstraps in our main procedure from 1,000 to 10,000 does not appreciably reduce
onfidence intervals. Our inability to reject the null of equal welfare impacts across certain models
s consistent with Gerarden and Yang ( 2023 ): they found, in an analogous HER-delivery setting,
hat the advantage of more complicated treatment rules (using the technique of empirical welfare

aximisation (Kitagawa and Tetenov, 2018 ), as a function of attributes) relative to a treatment
ule solely determined by baseline consumption is not statistically significant. 

We also present results of several variations on the targeting rule in Online Appendix B . Online
ppendix Figure B4 employs a marginal cost of $3.50 instead of $7.00, in acknowledgement of

he possibility that the true social marginal cost of HER delivery is lower than what Eversource
ays. Online Appendix Figures B5 –B7 target households in the top quantile (half, quartile
r decile) of predicted social net benefits for treatment, instead of households with positive
redicted net benefits. In these iterations, the forest usually, but not always, performs better
The Author(s) 2025.

13 Figure 9 uses a ‘fixed-rule’ bootstrapping procedure, in which the treatment assignment chosen by each model in the 
nitial run of the targeting exercise is held fixed across all bootstraps; only the sample changes. Online Appendix Figure B3 
hows confidence intervals from a non-fixed-rule procedure in which each bootstrapped sample is used to run a new 

orest producing a new treatment assignment. See Online Appendix C.5 for a fuller description of our bootstrapping 
rocedures. 

25
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(a) Training on a random sample
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(b) Training on 2014 waves
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Fig. 9. Social Net Benefits of Targeting, by Predictive Method. 
Notes: The top bar is the estimated annual SNBs produced from the treatment assignment chosen by the 
forest, relative to a no-action counterfactual. Each other bar depicts the estimated annual gain in SNBs 

produced from targeting using the forest instead of the listed alternative method. The targeting rule is to 
treat if predicted SN B > 0 . Net benefits are expressed as an average per household in the full test sample, 

so that panels (a) and (b) are more comparable. Panel (a) depicts results from building all predictive 
models with a 50% random sample of households and targeting in the other 50% ‘test’ sample. Panel (b) 
depicts results from building all predictive models exclusively with households in HER waves beginning 
in 2014 and targeting among waves beginning in 2015 or later; the ‘interacted’ model is not included in 
panel (b) because it does not identify households that satisfy the targeting criterion. Confidence intervals 

are generated via bootstrapping, which we describe in greater detail in Online Appendix C.5 . 
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han comparison models, with the baseline model continuing to provide the stiffest competition.
he lasso, meanwhile, is the clear next-best model when we target in later waves using earlier
nes (the stiffer test of external validity). The comparable performance across the board of the
ne-dimensional baseline model with the forest may reflect the specific treatment in question, as
he literature on HERs overwhelmingly finds absolute baseline consumption to be the strongest
redictor of treatment effects. It may also (or alternatively) reflect our lack of data on the exact
ocial comparison that households receive: our proxy for this comparison is the most frequently
sed splitting variable in the forest, but using it nonetheless introduces measurement error. 

In any case, when using earlier waves to target later, rather different waves, the two machine
earning (forest and lasso) models and the simplest regression (baseline consumption) model tend
o do better than the three more complicated regression models. This pattern reinforces the notion
hat avoiding overfitting is valuable, because the better-performing models involve active steps
o address overfitting, while the worse-performing models do not. The forest and lasso models
ounteract overfitting algorithmically through subsampling and regularisation, respectively. The
aseline regression model does so by restricting the treatment effect to vary only (and linearly)
ith baseline consumption. 

. Conclusion 

his paper brings together two recent innovations in economics: first, machine learning, which
olds great promise as a tool for high-resolution evaluation and prediction; and second, the
ncreased use of nudges within government and business programs. We empirically assess the
atter using the former, in the context of a large-scale experiment promoting household energy
onservation. We leverage fifteen experimental waves covering more than 900,000 households,
n which the treatment is a periodic social comparison message designed to nudge households
o reduce electricity consumption. We use the causal forest ML algorithm, an ensemble method
ased on classification and regression trees, adapted for causal inference. 

The causal forest we estimate reveals several facts about treatment effects in this context.
irst, there is wide variation in responses to the nudge. The overall average treatment effect is
 9 kWh monthly reduction in electricity consumption, but individual effects range from −1 to
33 kWh. Second, higher absolute and relative consumption (in comparison to neighbours) are

oth (simultaneously) predictive of larger treatment-induced reductions in electricity use. These
nd home value are more frequently used in the forest than all other household attributes. Third,
hile treatment effects are almost entirely negative (that is, reductions), for many households,

hey are not large enough to be predictive of positive social net benefits from treatment. Put
ogether, the forest-identified variation in treatment effects suggests the potential to improve
rogram effectiveness through targeting and tailoring of treatment. 

To test this potential, we develop an out-of-sample prediction exercise that mimics how
argeting may be done in the real world. The exercise allows us to compare the benefits of forest-
ased targeting to those of the actual treatment assignment as well as five alternative targeting
ethods. When training and hold-out samples are randomly drawn, the forest produces nearly
ve times the aggregate social net benefits as the Opower program and 10% more benefits than

he best non-forest predictive method. When we train predictive models on 2014 waves and target
n post-2014 waves (which are very different), the forest produces nearly three times the benefits
f the Opower program and 9% more benefits than the best alternative. The forest’s advantage is
tatistically significant relative to some, but not all, alternatives; our pattern of results suggests
The Author(s) 2025.
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hat the models best set up to minimise overfitting (in our case, the two ML models and the
parsest regression model) tend to perform best. 

At a high level, our context, methods and results comprise a case study that can be a useful
esource for those considering the selective targeting of some treatment, intervention or program
sing machine learning methods, especially causal forests. Our results show how forests could
otentially be used by firms and policymakers to improve program effectiveness and social
elfare through targeting. In addition, they point to the possibility of even further welfare gains

hrough selective tailoring of treatment: those whom targeting identifies as undesirable to treat as
s are strong candidates to receive adjusted treatments or programming that meets their specific
eeds. All told, we believe that ‘disciplined’ high-resolution predictive methods like causal
orests have the potential to be a helpful tool for improving cost effectiveness, social welfare
nd/or distributional equity in a wide variety of settings. 

assachusetts Institute of Technology, USA 

niversity of Michigan, USA 

dditional Supporting Information may be found in the online version of this article: 

nline Appendix 

eplication Package 
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