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USING MACHINE LEARNING TO TARGET TREATMENT:
THE CASE OF HOUSEHOLD ENERGY USE*
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We test the ability of causal forests to improve, through selective targeting, the effectiveness of a randomised
program providing repeated behavioural nudges towards household energy conservation. The average treat-
ment effect of the program is a monthly electricity reduction of 9 kilowatt hours (kWh), but the full distribution
of predicted reductions ranges from roughly 1 to 33 kWh. Pre-treatment electricity consumption and home
value are the strongest predictors of differential treatment effects. In a pair of targeting exercises, use of the
causal forest increases social net benefits of the nudge program by a factor of 3-5 relative to the status quo.
Using models calibrated with earlier program waves to choose households to target in later ones, we estimate
that the forest produces more benefits than five other alternative predictive models. Bootstrapping to generate
confidence intervals, we find the forest’s advantage to be statistically significant relative to some, but not all,
of these alternatives.

JEL codes: C53, D90, Q40

The rise of randomised controlled trials (RCTs) in economics has produced a wealth of evidence
on the average causal effect of many social and private-sector programs.' Concurrent with the
rise of RCTs to evaluate programs, following the seminal work of Thaler and Sunstein (2008),
there has a been a large increase in the use of ‘nudges’ to move behaviour in welfare-enhancing
ways;” DellaVigna and Linos (2022) reported that, worldwide, more than 200 government teams
are devoted to using behavioural science to improve government programs and outcomes. Yet the
interventions used by these agencies are not costless and often have divergent impacts across the
treated population. Understanding how different subgroups respond to a given treatment has the
potential to unlock large increases in program effectiveness by allowing for improved targeting
of the existing treatment (that is, identifying whom to treat) as well as improved design of the
treatment itself (e.g., tailoring treatment for specific subgroups).

Machine learning (ML) methods are an attractive option for estimating heterogeneous
treatment effects (Athey and Imbens, 2019). They offer disciplined ways to search non-
parametrically for heterogeneity, as well as strategies for minimising overfitting, and thus
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maximising out-of-sample predictive power. There is an active body of research on the design
of ML algorithms for causal inference (e.g., Imai and Ratkovic, 2013; Wager and Athey, 2018),
program evaluation (e.g., Knaus, 2022; Chernozhukov et al., 2023) and optimal targeting (e.g.,
Kitagawa and Tetenov, 2018; Athey and Wager, 2021), and empiricists have quickly found
use for these tools across a wide variety of settings (e.g., Kleinberg er al., 2018; Allcott and
Kessler, 2019; Deryugina et al., 2019). Tree-based methods (Breiman et al., 1984; Breiman,
2001)—in which a sample is repeatedly split into subsets, or ‘leaves’ on a tree—are one class of
ML algorithms in which significant progress has been made: researchers have adapted existing
methods for causal estimation of conditional average treatment effects (CATEs) via causal
trees (Athey and Imbens, 2016) and causal forests (Wager and Athey, 2018); empirical studies
increasingly leverage the causal forest in program evaluation (Davis and Heller, 2020; Gulyas
and Pytka, 2020; Knittel and Stolper, 2021; Ellickson et al., 2023).

In this paper, we apply the causal forest algorithm to evaluate a series of large-scale randomised
experiments in household energy use. We use the causal forest to predict treatment effects among
700,000 households and investigate the relationship between treatment effects and household
attributes. To illustrate the practical value of forest-derived CATEs, we estimate the welfare
gains from selective targeting of treatment to maximise a social objective function. We compare
the targeting performance of the causal forest to that of the status quo (i.e., actual) treatment
assignment, as well as a lasso model and four non-machine-learning, regression-based predictive
models of differing complexities.

Our results contribute to the growing empirical literature on the use of machine learning to
target treatment, which features applications to (for example) government tax rebates (Andini
et al., 2018), marketing (Ascarza, 2018) and fundraising (Cagala ef al., 2021) communications,
and programs related to household energy use (Gerarden and Yang, 2023; Christensen et al.,
2024). To this literature, we add a case study of causal forests, applied to a large-N experiment in
nudges to conserve energy. Understanding the effectiveness of behavioural interventions to reduce
energy consumption is also of independent interest. Electricity and heating account for roughly a
third of global carbon emissions (World Resources Institute, 2022), and many expect electricity
use to increase considerably through the electrification of transportation, heating and cooking.
Policymakers are, therefore, looking for potentially cost-effective ways to reduce electricity and
heating demand.

Our empirical setting is the retail electricity service territory of Eversource, the largest electric
utility in New England. Eversource’s flagship behavioural energy efficiency product is the Home
Energy Report (HER), a short, regular mailing that compares a customer’s electricity (and natural
gas) consumption to that of similar, nearby households and provides information on ways to save
energy. Since 2011, the company has been experimentally rolling out HER programming in
waves. Our program evaluation spans fifteen experimental waves covering 902,581 Eversource
residential customers. We observe monthly household electricity consumption from 2013-18 and
cross-sectional characteristics pertaining to homes and their occupants. This context is especially
ripe for estimating heterogeneous treatment effects for three reasons. First, the large overall
sample size available provides greater statistical power than is normal in RCTs. Second, intuition
and empirical evidence suggest that HERs induce various behavioural responses (Allcott, 2011;
Costa and Kahn, 2013). And third, the roll-out of the experiments across both time and geography
provides an opportunity to test the external validity of the methods.

© The Author(s) 2025.
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Our central estimate of the pooled average treatment effect (ATE) across all HER program
waves—which we estimate via panel regression—is a reduction in monthly electricity usage
of 9 kilowatt hours (kWh) or 1%. This ATE is consistent with the lower end of the range
of existing estimates (Allcott, 2011; 2015 Ayres et al., 2013). However, the pooled average
masks heterogeneity across waves and over time because sample makeup varies across waves
and the household response to HERs evolves with repetition, respectively. Our event study of
Eversource’s HER program shows a steady increase in treatment-driven energy conservation
throughout program year one. There is no evidence of attenuation of program impacts in years
two and three; if anything, the reductions in electricity consumption continue to increase. The
year-three pooled ATE in our sample is —14 kWh, or —1.5%.

Our causal forest yields an estimated range of household treatment effects of roughly —1 to —33
kWh per month, and the whole treatment effect distribution shifts leftwards (that is, downwards)
each successive year. Many households respond by increasing their energy use reductions over
time; at the same time, many households have persistently low-magnitude treatment effects. The
most commonly used household attributes in the forest are measures of absolute baseline (that is,
pre-treatment) consumption, relative baseline consumption (a proxy for the social comparison
that each treated household receives) and home value. This suggests that the distribution of
households’ predictions is caused by both effect heterogeneity and treatment heterogeneity
(through the social comparison). We estimate non-parametric group average treatment effects
(Knaus, 2022) and conduct a classification analysis (CLAN; Chernozhukov et al., 2023) to better
understand how attributes differ across the treatment effect distribution. In particular, we find
that the size of the treatment effect (i.e., reduction) is monotonically increasing in both absolute
and relative electricity consumption.

In our targeting exercise, we train a predictive model on one subsample of households and use
it to assign treatment in another, held-out subsample, with the rule of only sending reports to
those households for which predicted social benefits exceed the marginal cost of sending reports.
We then estimate actual social net benefits in this group targeted for treatment, bootstrapping
to generate confidence intervals. We ‘horse race’ six predictive models—the causal forest, a
lasso and four regression-based alternatives—so that we are able to, not only gauge how the
forest performs relative to the status quo treatment assignment, but also how the forest performs
relative to computationally simpler options. And we run the whole exercise twice—once assessing
targeting in a randomly drawn hold-out subsample and a second time training the model on
chronologically earlier experimental waves and assessing targeting in later waves with disparate
household attributes.

In our primary specifications of the targeting exercise, the forest produces three to five times
the social net benefits of the status quo treatment assignment. It also outperforms each of the
five alternative predictive models regardless of whether we train on a random sample or split
by wave start date. However, not all of these differences are statistically significant. When we
split randomly, several of the differences are economically significant, and the forest’s gains
relative to the lasso and the most complicated regression model are statistically significant (in
the latter case, marginally so); when we split by wave start date, the forest’s gains are statistically
significant relative to the three more complex regression models. The simplest regression-based
predictive model of treatment effects, which depends only on absolute baseline consumption, is
competitive with the forest across all our targeting exercises—consistent with the conventional
wisdom that baseline consumption is a major determinant of HER treatment effects. In aggregate,
the lasso is the second-best performing alternative model. Put together, our results suggest that
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taking active steps to address overfitting risk is important: the machine learning (forest and lasso)
models and the baseline-consumption model—which mitigate overfitting algorithmically and
by manually choosing a (very) sparse model, respectively—separate themselves from the more
complex regression models in the chronological targeting exercise, which is the more difficult
out-of-sample prediction test.

1. Empirical Context
1.1. Home Energy Reports

The HER was developed by Opower and rolled out via randomised control trials in participating
electric utility service territories beginning in 2008. The initial motivation for the reports came
from a field experiment in San Marcos, CA carried out by Schultz er al. (2007), who found
social norm messaging to be effective in reducing home energy consumption. The Opower HER
is characterised by two components. The first is information about absolute and relative energy
consumption. Usually, the HER lists a household’s consumption in the last month and compares
it (numerically and graphically) to a sample of similar, nearby households. In the context of social
norm theory, peer-rank information can serve as a non-financial incentive to ‘nudge’ individuals
towards socially desirable behaviour. By providing a relevant reference point, households are
able to compare their behaviour to that of others when no other social standard is available,
inducing convergence towards the displayed social norm (Festinger, 1954).3 See Figure 1 for an
example Eversource HER.

The second component of the HER is a set of action steps—suggestions for how to conserve
energy, both through changes to a household’s stock of energy-using durables and changes in
the use of that capital stock. Action steps can be made accessible through a customer portal
(as in Figure 1), or they can be displayed directly in the report. Reports are generally sent out
either monthly or quarterly. Historically, the great majority of HERs have been delivered by
mail in hard-copy form, but Eversource has experimented with email HERs. Customers can and
(infrequently) do opt out of the HER program, but it is unclear how many households are aware
of the opportunity to do so.

There are several potential reasons why an electric utility may choose to send HERS to its
customers. Perhaps the most frequently discussed reason is compliance with energy efficiency
resource standards, which, in thirty-three states (National Conference of State Legislatures, 2021),
requires utilities achieve a certain amount of new cost savings through energy efficiency measures
every year. HERs may provide a cost-effective way to comply with such standards. Another reason
to send HERSs is to improve customer satisfaction by keeping households informed about their
bill and ways to potentially reduce it. Research on HER impacts has, to date, focused almost
exclusively on energy consumption rather than customer satisfaction, perhaps due to limitations
on the latter’s data availability.

Allcott (2011) studied the electricity usage impacts of the first wave of Opower experiments and
estimated a short-run ATE of —2.0% (that is, a 2% monthly reduction in electricity consumption).*

3 The algorithm that identifies ‘similar’ households is an Opower trade secret, but we believe that it is a function of at
least home location and home size.

4 In the context of Allcott (2011), 2.0% is equivalent to 0.62 kWh per day. A reduction of this magnitude could have
been achieved, for example, by turning off a typical air conditioner for 37 minutes per day, or by switching off a 60 W
incandescent light bulb for 10.4 hours per day.
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Fig. 1. Eversource Home Energy Report.
Source: Eversource.

Ayres et al. (2013) concurrently studied the effects of two other Opower interventions and found
ATEs of —2.1% and —1.2%, respectively (the latter is an aggregate estimate for home electricity
and natural gas usage). Allcott (2015) identified ‘site selection bias’ in HER experiments: using
results from the first ten Opower experiments to predict results in the next hundred experiments
significantly overstates program effectiveness. Allcott and Rogers (2014) studied the long-run
impacts of HERs and shed light on the time pattern of a household response. Initially, treated
households reduce energy use right after receiving a report, but slide back upwards over time
until receiving the next report. This ‘action and backsliding” pattern dissipates over time, but the
monthly conservation effect continues rising even after two years of repeated treatment. Finally,
the conservation effect is relatively persistent after reports are stopped: the decay rate of the effect
is 10%—20% per year.

Several studies document heterogeneous effects of HERs on savings and well-being. Allcott
(2011) found that the treatment effect varies with baseline electricity consumption: the top decile
has an ATE of 6.3%, while the bottom decile’s ATE is statistically indistinguishable from zero.
Ayres et al. (2013) similarly found a positive correlation between baseline usage and HER-
induced reductions in usage. Costa and Kahn (2013) showed that politically liberal households
reduce energy usage in response to HERs two to four times more than politically conservative
ones. Byrne et al. (2018) identified boomerang effects—that is, unintended positive treatment

© The Author(s) 2025.
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Table 1. Summary of Experimental Home Energy Report Program Waves.

Date Location Type N % Treatment
February 2014 New Hampshire Base 42,709 50.0
February 2014 Western Massachusetts Base 95,455 91.9
April 2014 Connecticut E-Delivery 85,360 83.3
April 2014 Connecticut HEA 11,883 66.4
April 2014 Connecticut Base 199,802 91.7
April 2014 Eastern Massachusetts Base 49,610 88.4
January 2015 ‘Western Massachusetts Base 24,837 71.1
April 2015 New Hampshire Base 32,571 71.5
December 2015 Western Massachusetts Base 11,272 86.5
February 2016 Connecticut Base 137,896 88.1
February 2016 Connecticut Low-Income 16,981 53.0
February 2016 Eastern Massachusetts Base 59,892 76.5
March 2016 Connecticut Base 17,395 80.1
January 2017 Connecticut Base 69,517 76.0
January 2017 Eastern Massachusetts Base 69,517 62.8
Total 902,581 81.8

Notes: ‘Base’ indicates the standard Opower treatment. ‘E-Delivery’ indicates an email-only treatment. ‘HEA’ indicates
a sample of participants who have previously received a home energy assessment, aimed at providing recommendations
on how to save energy. ‘Low-Income’ indicates a lower-income sample of participants.

effects—among low baseline energy users as well as households that overestimate their baseline
energy use relative to others. Allcott and Kessler (2019) elicited willingness to pay for HERs
and identified significant heterogeneity across households. Lastly, Gerarden and Yang (2023)
estimated significant social benefits of targeting HERs using empirical welfare maximisation
(Kitagawa and Tetenov, 2018). Our work is most similar to Gerarden and Yang (2023), but is
differentiated by its focus on the causal forest, its exploration of the predictors of differential
treatment effects and the setup of its targeting exercise.

1.2. Eversource Experiments

Eversource’s service territory is divided into four regions: Eastern Massachusetts, Western
Massachusetts, Connecticut and New Hampshire. Some of its customers receive both electric
and natural gas service, while others receive only one or the other; Figure 2 maps the coverage
of these services.

Opower has run twenty-six waves of home energy report experiments in the Eversource electric
service area, with the earliest beginning in February 2011 and the latest beginning in January
2017. We consider fifteen of these, dropping eleven waves that either (a) begin outside our five-
year period of observation for household energy consumption, (b) target natural gas customers or
(c) target households that have just moved into new homes (who, in these waves, receive different
HERs that additionally vary over time). Table 1 details the timing, location and size of each
wave that we use in our analysis. Twelve of these waves use the standard, or ‘base’, Eversource
treatment (as shown in Figure 1): a periodic, hard-copy mailed report showing the customer’s
electricity consumption last month, average consumption among ‘similar’ nearby households and
a textual comparison of the two. Three program waves deviate from this standard treatment: one
of these replaces hard-copy reports with emailed ones, another exclusively covers households
that have previously received ‘home energy assessments’ aimed at providing recommendations

© The Author(s) 2025.
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Fig. 2. Eversource Service Territory Map.
Source: Eversource.

on how to save energy and the third targets households with, on average, significantly lower
incomes than the norm for Opower. All waves use either a monthly or quarterly report frequency.

According to correspondence with Eversource, Opower strategically targets households with
high baseline consumption for HER experimental participation. Indeed, our data confirm that
average electricity consumption is higher among households involved in an experiment than
among non-participating Eversource electricity customers. Table 1 also shows that the treatment-
control ratio varies significantly across waves and is always at or above 50:50. Opower chose
such high treatment probabilities in order to meet its electricity savings goals while keeping the
number of waves low.

© The Author(s) 2025.
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1.3. Data

We combine three types of data in order to estimate the impacts of home energy reports: house-
hold monthly electricity consumption from Eversource; treatment assignment and timing of
Eversource’s HER experiments; and cross-sectional demographic and socioeconomic character-
istics of participants. First, we obtain monthly electricity consumption totals (in kilowatt hours)
for the universe of Eversource customer accounts with residential electricity service in the period
from January 2013 to May 2018. After removing accounts with more than one observation (either
because the account is associated with multiple properties, or because there are irreconcilable
duplicates), we are left with 2,788,369 Eversource accounts (‘households’). To these, we merge in
treatment assignment data for the fifteen waves that we study. We drop the 2.6% of participating
households that are enrolled in multiple Opower experiments, as these households contaminate
the pure treatment-versus-control comparison.

We combine our consumption and treatment assignment data with cross-sectional home and
household predicted characteristics from Experian, via Eversource. We include fourteen charac-
teristics in our analysis. To capture home attributes, we use home age, value and square footage,
as well as the number of rooms. To describe families, we use the age of the household respon-
dent, the number of adult residents and an indicator for the presence of children. We further
include indicators for single-family occupancy and owner occupancy. Finally, we include aver-
age baseline consumption, income, educational attainment, an index for ‘green awareness’ and
an indicator for take-up of a subsidised home energy assessment. After dropping households
with outlier values of home square footage or number of rooms, we are left with a main sample
of 902,581 households. We feed this sample through a multiple imputation algorithm in order to
fill in missing values of the home and household characteristics (see Online Appendix C.1 for
details on this procedure).

Table 2 summarises the fourteen characteristics and tests for balance across treatment and
control observations in our pooled analysis sample. Column (1) presents the full-sample mean
of each characteristic (with the SD in parentheses). Column (2) displays the treatment-control
difference in means (and the SE in parentheses) for each characteristic, as the coefficient from a
regression of the particular characteristic on the treatment binary variable and a set of wave fixed
effects, with robust SEs. One of the treatment-control differences is significant, at the 5% level;
we view this as a typical result of conducting fourteen hypothesis tests. We present wave-specific
balance tables in Online Appendix A.

2. Empirical Strategy

We follow much of the existing literature on Home Energy Reports and begin by using difference-
in-differences regressions, leveraging random assignment of households into treatment and con-
trol groups, to estimate average HER program effects on electricity consumption. To test for
heterogeneity in these effects and investigate the role of household characteristics in predict-
ing them, we use the causal forest algorithm, implemented with the generalised random forest
package of Tibshirani et al. (2024). This algorithm yields a distribution of predicted individual
household impacts on consumption, as well as information about the use of each characteristic
in growing the forest from which those impacts are predicted.

© The Author(s) 2025.
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Table 2. Treatment-Control Balance.

Sample-wide Treatment-control
mean difference in means
(1) (2)
Baseline consumption (kWh) 812.161 0.010
(400.539) (0.836)
Home value ($) 378,215.758 —1,049.013
(393,255.443) (1,002.546)
Home square footage 19.689 —0.019
(11.857) (0.035)
Number of rooms in home 7.138 —0.007
(2.226) (0.006)
Year home built (1-5) 1,968.060 0.038
(23.536) (0.065)
Single-family occupancy (= 1) 0.808 —0.001
(0.394) (0.001)
Renter (= 1) 0.164 0.002**
(0.370) (0.001)
Annual income ($) 97,781.877 —199.526
(68,372.743) (186.745)
Education (1-5) 3.199 —0.005
(1.245) (0.003)
GreenAware score (1-4) 2.163 —0.004
(1.134) (0.003)
Number of adults 2.375 —0.002
(1.347) (0.004)
Child in home (= 1) 0.487 —0.001
(0.500) (0.001)
Participated in energy audit (= 1) 0.341 0.002
(0.474) (0.001)
Age 55.762 0.030
(14.927) (0.042)

Notes: Column (1) displays the full-sample mean and (in parentheses) SD of each listed household characteristic.
Column (2) displays differences in means and (in parentheses) corresponding SEs. Column (2) estimates come from
linear regression of each characteristic on treatment status, with wave fixed effects and robust SEs. **p < .05.

2.1. Estimation of Average Treatment Effects

We use our household-monthly panel data on electricity consumption to estimate wave average
treatment effects via the regression

kWhiy = ay + o Ty + Xin + 6; + o, + ey, (D

where k W h;, is electricity consumption for household i in year-month ¢, T}, is the binary treatment
variable taking a value of one for treated households from the program start date onward, X; is
a vector of household characteristics, and 6; and w, are household and year-month fixed effects,
respectively. Our primary specification for the ATE is thus a difference-in-differences setup,
which is standard in the literature evaluating randomised home energy reports (Allcott, 2011;
Ayres et al., 2013; Costa and Kahn, 2013; Gerarden and Yang, 2023); we also provide difference-
in-means ATE estimates in Online Appendix B. We cluster SEs by zip code. Here, «; is the
coefficient of interest—the average treatment effect in kilowatt hours per month. We calculate a
‘pooled’ ATE as the average of all wave ATEs, weighted by wave sample size.
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With variation in the timing of wave start dates, we use an event-study model to investigate
the evolution of HER impacts over time. The estimating equation is

36
kWhiwt = ﬁl + Z tjDijwt + Xlr) + 91’ + @y + it (2)
j=—12

Here, we use all waves simultaneously to estimate a pooled ATE for each period j relative
to the event of interest—the beginning of treatment in the relevant wave. Variable Dy, is a
binary variable equalling one if an observation is in wave w, j months after (or before) HER
mailings begin in that wave, where j € [—12, 36].> We omit DV;}, corresponding to the month
immediately preceding the start of HER mailings, from the estimating equation, so that all
coefficients are interpretable as the monthly ATE relative to this month. We employ household

and wave-year-month fixed effects and again cluster SEs at the zip code level.

2.2. Causal Forests

The causal forest algorithm (Athey er al., 2019) is an adaptation of random forests (Breiman
et al., 1984) for the measurement of causal effects. Random forests are themselves an ensemble
method applied to classification and regression trees (CARTSs; Breiman, 2001), which employ
recursive partitioning to split a sample into subgroups that maximise heterogeneity across splits.
A tree is a single run of recursive partitioning; a forest is an ensemble of trees, where each tree
is grown from a randomly drawn subsample of the data.

CARTs were originally developed for prediction of outcomes y as a non-parametric function
of covariates. Athey and Imbens (2016) adapted CARTS for prediction of treatment effects 3,
enabling the construction of valid confidence intervals for these effects. Wager and Athey (2018)
did the same for random forests, establishing the consistency and asymptotic normality of their
‘causal’ forest estimators. Athey er al. (2019) nested causal forests in a ‘generalised random
forest’ framework; we construct a causal forest using their generalised random forest (grf) R
package (Tibshirani et al., 2024).

We observe outcomes Y;, treatment assignment W; and household attributes X;. For a single
tree, we start by drawing a random subsample, without replacement, from the full cross section of
Opower households. The algorithm takes this subsample as its ‘root node’ and splits it into two
child nodes; the split is defined by some threshold value of one of the household attributes (in
X;). The splitting rule used in the grf package favours splits that increase the heterogeneity of its
average treatment effects as fast as possible (Athey er al., 2019). More formally, the objective is
to find the single value of a single variable at which splitting the sample minimises (an indicator
of) in-sample prediction error in the child nodes (Athey et al., 2019). Child nodes are then split
recursively to form a tree, stopping when there are fewer than a threshold number of households
in a given node. The terminal nodes are called ‘leaves’.

The causal forest is a collection of these trees, where each tree has been grown using a new
randomly drawn subsample, as well as a new random subset of the splitting variables (X;). From
these trees, we can construct weights «; (x) that measure how often the ith household falls in the
same leaf as x—what Athey et al. (2019) called ‘the forest-based adaptive neighbourhood of x’.

5 We also estimate wave-specific event studies and calculate pooled time-specific coefficients in the same fashion as
described for the full-period ATE (that is, as averages weighted by wave sample size). The resulting event-study plot is
qualitatively the same as what we show from our main analysis in Section 3 below.

© The Author(s) 2025.

G202 1890100 1z U0 Josn ueBIyolA Jo AsIoAun Ad €28/ 18//L€2/2/9/SE L/oI0IE/fo/woo dno olwapede/:sdiy Woly papeojumod



2025] USING MACHINE LEARNING TO TARGET TREATMENT 2387
The weights are then applied to the estimation of treatment effects 7:

o /M ¥ LY — (X)W — e(X))]
(1/n) 31 [W; — e(X))]?

with /m(X;) an estimated expectation of ¥; conditional on X;, and e(X;) the propensity score (the
causal forest function labels these ‘Y.hat’ and “W.hat’, respectively). Athey and Wager (2019)
described the estimation procedure for both the weights o; (x) and treatment effects t in further
detail.

We grow a forest consisting of 10,000 trees. In our causal forest, each tree is grown with a
different random 50% subsample of households and a different subset of available characteristics.°
We employ ‘honesty’ in training causal forests: after the initial 50% subsample is drawn for a
given tree, that subsample is split once more in half, and one half is used to grow the tree structure
while the other is held out to then repopulate the leaves after tree growth (and define the weights
a;(x)). Athey and Imbens (2016) introduced this practice in tree growth as a way to reduce bias
and counteract the overstatement of goodness of fit at deeper levels of a tree.

The whole tree-specific procedure can thus be represented as follows.

3

(1) Randomly draw (i) a 50% sample of households and (ii) a subset of available characteristics.
(2) Randomly split the sample in half, creating a ‘training set’ S;, and an ‘estimation’ set S,;;.
(3) Using S;,, grow a tree.

(4) Match households in S, to leaves of the tree, according to observed characteristics.

After all trees are grown, adaptive weights can be calculated, and treatment effects estimated
according to (3).

Several additional nuisance parameter values must be chosen. By default, grf first estimates
m(X;) and e(X;) via a regression forest and makes out-of-bag predictions, which are then used
to grow the main causal forest. We retain this default for 72(X;), but, for é(X;), we use household
i’s wave-specific treatment fraction, which is the true (‘oracle’) propensity score (Athey and
Wager, 2021). We also choose the default value—0.05—for the ‘maximum split imbalance’,
which stipulates a minimum relative size of each child node in a potential split of some parent
node (the option accepts values in [0, 0.25]).

The parameter ‘minimum node size’ sets the minimum number of both treatment and control
observations in a leaf required to continue splitting it. The default value is 5, but we decline
to use that value because treatment assignment in our context is skewed (in aggregate, 83%
of households are treated), and we do not want forest leaves with as little as 1 or O control
observations. Instead, we tune this parameter by growing a set of forests with variable minimum
node size between 500 and 10,000 and choosing the minimum node size that minimises R-loss
(Nie and Wager, 2021). We conduct this tuning exercise three times: once for the forest that
uses all households (with non-missing input data), and once each for the two forests grown as
part of our targeting exercises, which hold out some households entirely from forest growth. We
present the R-loss results from our tuning process in Online Appendix Figure B1; they indicate a
minimum node size of 1,000 for the all-household forest, and 3,000 for the first targeting forest
and 500 for the second targeting forest.”

© The number of characteristics chosen varies by tree according to a draw from a Poisson distribution.
7 We do not use the ‘cluster’ option in our preferred forests, but we do grow a forest with clustering and present results
for comparison in Online Appendix Figure B2; see the next section for further reference.
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The grf package is set up to use cross-sectional data on {Y;, W;, X;}. To take advantage of our
panel data structure, we define Y; as the difference between average monthly electricity usage
in year ¢ of the relevant HER program wave (where ¢ € 1, 2, 3) and average usage in the year
prior to the wave start date. Variable W; continues to be the binary treatment variable. To the X;
vector we add one more variable, which is meant to capture variation in the treatment itself (that
is, not just in the treatment effect). It is a proxy for the social comparison one receives in a Home
Energy Report. We do not observe the exact social comparison that each household receives in
each month or quarter, but we can develop a proxy inspired by the fact that Opower’s algorithm
tries to construct comparison groups from similar households in similar locations.

To be precise, we observe 495,136 households with non-missing Y; in the year prior to as
well as the two years following their wave’s start date. We draw a random 50% of this sample,
stratified by zip code, and use that subsample to estimate zip code—specific regressions of baseline
consumption on home value, home square footage, the number of rooms and the year in which
the home was built. Then we set this ‘training’ sample aside and predict, in the remaining 50%
sample, each household’s residual baseline consumption according to the calibrated regression
model for its zip code. This residual reveals how much larger or smaller a given household’s
baseline consumption is relative to the average household with those attributes in its zip code—a
proxy for the actual social comparison. We include the residual as an element of X in forest
growth, and we use as forest input data only those 247,394 households held out of the zip code
model prediction.

3. Treatment Effect Estimates
3.1. Average Treatment Effects

Figure 3 displays ATE estimates in each individual Opower wave as well as for the full, pooled
sample. These results correspond to (1). The pooled ATE is —9.35 kWh (per month), or —1%.
While this is somewhat lower than the ATEs found in earlier Opower experiments (Allcott, 2011;
Ayres et al., 2013; Costa and Kahn, 2013), the difference may be explained at least in part by
‘site selection bias’ (Allcott, 2015): earlier Opower experiments systematically targeted areas and
households with larger potential to reduce consumption. Wave-specific ATEs range in magnitude
from —1.6 to —17.7 kWh. Nine of the fifteen individual program-wave ATEs are statistically
significant at the 5% level or lower.?

There is an apparent negative trend in ATE estimates over time in Figure 3, which is ordered by
wave start date, consistent with Allcott (2015). Differences in the length of the post-period may
be a part of the explanation. Figure 4—generated through estimation of (2)—sheds light on how
the consumption impact of HERs evolves over time, on average. In the twelve months prior to
the program start date, the point estimate is never statistically different from zero. In the first two
months of the treatment (months zero and one of the treatment), there is no drop in consumption.
But, for the next four months, there is a steady, steep downward trend in average consumption.
Month-specific point estimates are statistically significant beginning in month four. The ATE
continues to steadily rise in years two and three. In sum, households take time to ramp up their
response to reports, but continue changing behaviour into at least the third year of treatment.

8 In Online Appendix Table B1, we tabulate difference-in-means estimates of pooled average treatment effect by year.
The estimate rises each year, from —6.43 kWh, to —11.46 and to —14.39 by year three. Each year-specific ATE estimate
is statistically significant at the 1% level.
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Fig. 3. Average Treatment Effects, by Wave: Consumption.

Notes: The y axis denotes a specific wave (waves are ordered by start date), and the x axis measures the
ATE in kilowatt hours. The vertical dashed line denotes the weighted pooled average of all wave-specific
ATEs, with weights equal to the wave sample size. Error bars denote 95% confidence intervals. CT,
Connecticut; EMA, Eastern Massachusetts; NH, New Hampshire; WMA, Western Massachusetts. All
effects are estimated via a panel difference-in-differences regression, using (1) and as described in
Section 2.1.

Average treatment effect (kWh)
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Fig. 4. Event Study of Pooled Experimental Waves: Consumption.

Notes: The solid line data points are event-study coefficients from estimation of (2). Dashed lines indicate
95% confidence intervals. The event-study binary variable corresponding to the month immediately prior
to the start of HER mailings is omitted from the regression, and thus set to zero in the figure; all other
points are interpretable as predictive effects relative to this omitted month.

3.2. Conditional Average Treatment Effects

Figure 5 depicts the distribution of household treatment effect predictions produced by the
causal forest. We plot separate distributions for each of the first three years of treatment. Each
distribution has the same general shape, with a single prominent peak and a left skew. Each year,
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Fig. 5. Distribution of Predicted Treatment Effects.

Notes: Each plotted distribution is a kernel density of household treatment effects in a specific year (1, 2 or
3) of HER programming. The sample is fixed across years: only households with non-missing
consumption in all three post-years are included. Treatment effect predictions come from our causal forest
(Section 2.2).

the distribution shifts to the left, with the peak getting smaller and the left tail getting thicker.
For example, in year one only 0.2% of households are predicted to reduce consumption by
20 kWh or more, but by year three that number rises to 15.4%. ATEs calculated by the grf
function are —7.26 kWh in post-year one, —10.29 in post-year two and —12.5 in post-year three.
The full range of predicted treatment effects extends from roughly —1 to —33 kWh.”

What predicts heterogeneity in treatment effects? Figure 6 plots the frequency of selected
characteristics’ use as a splitting variable in the forest, conditional on being (randomly drawn to
be) available in splitting. The six characteristics included in this figure—our social comparison

® Online Appendix Figure B2 shows year-specific treatment effect distributions from a forest with zip code—level
clustering. The results are qualitatively indistinguishable from those of Figure 5.
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Fig. 6. Usage of Characteristics in the Causal Forest.

Notes: Each line plots, on the y axis, the empirical likelihood of a specific characteristic being chosen to
define a forest split at split level x, conditional on being available as a splitting variable. We show
percentages for the six most frequently used characteristics: the social comparison proxy, baseline

consumption, home value, home square footage, the year in which the home was built and the age of the

household respondent. The underlying sample includes all households with non-missing consumption in
the year prior to the program start date and each of the first three years following the program start date.
The dependent variable in the forest is average consumption in post-year two minus average consumption
in the first pre-year. See Section 2.2 for further implementation details.

variable, baseline consumption, home value, home square footage, the year in which a home was
built and the respondent’s age—are the most frequently used. The social comparison variable is
chosen as the initial splitting variable in 52% of trees in which it is eligible. Baseline consumption
is chosen about 34% of the time. By the third level of the tree, these two attributes have the same
frequency of use—just above 20%—and they remain in the 15%—-22% range for the duration of
tree growth. A third attribute, home value, is also used about 16% of the time throughout tree
growth. We note, however, that these results may be sensitive to the addition of a new predictor
that is correlated with one of the most commonly used existing ones.

While frequency of use in tree growth provides some insight into the relative predictive
power of characteristics, it does not clarify how these characteristics are related to treatment
effects. To shed some light on these relationships, we provide two further analyses. The first is
a classification analysis (CLAN; Chernozhukov et al., 2023), which is a comparison of average
characteristics among those with the largest treatment effects versus those with the smallest,
as estimated by the causal forest. We follow the implementation described by Deryugina et al.
(2019) to generate treatment effect predictions, which we order and group into quintiles, and
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Table 3. Characteristics of High versus Low Treatment Effect Households.

Top 20% Bottom 20% Difference
Q) ) 3)
Social comparison (kWh) 353.02 —150.51 503.52%+*
5.58
Baseline consumption (kWh) 1,260.83 782.84 477.99%**
13.02
Home value ($) 355,758.96 460,184.34 —104,425.38***
23399.58
Home square footage (100s) 20.62 21.04 —0.41
0.39
Number of rooms in home 7.26 7.28 —0.02
0.06
Year home built 1969.81 1967.78 2.03%**
0.43
Single-family occupancy (= 1) 0.86 0.91 —0.05%*
0.01
Renter (= 1) 0.1 0.1 —0.01
0.01
Annual income 102,908.33 107,962.35 —5,054.02*
1900.25
Education (1-5) 322 3.35 —0.13%**
0.03
GreenAware score (1-4) 2.21 2.17 0.03
0.02
Number of adults 2.75 243 0.32%**
0.02
Child in home (= 1) 0.45 0.55 —0.10%**
0.01
Participated in home 0.37 0.36 0.00
energy audit 0.01
Age 58.07 54.79 327
0.29

Notes: Columns (1) and (2) display mean characteristics among households in the top 20% and bottom 20%, respectively,
of the predicted treatment effect distribution. “Top 20%’ indicates the largest reducers (of electricity consumption);
‘Bottom 20%’ indicates the smallest reducers (as well as any increasers). Predictions are generated through a procedure
developed by Chernozhukov et al. (2023) and implemented by Deryugina et al. (2019); see Online Appendix C.2 for
details. Column (3) displays differences between columns (1) and (2), along with SEs clustered by zip code in parentheses,
estimated via regression of each characteristic separately on a binary variable equalling one if a household is in the top
quintile. *p < .1, **p < .01.

then measure differences in mean characteristics between the top quintile and bottom quintile
(we describe the procedure in further detail in Online Appendix C.2).

We present the results in Table 3. The ‘top-20%’ reducers in response to treatment have, on
average, higher absolute baseline consumption as well as relative consumption (as captured by
our social comparison proxy), in comparison to the bottom 20%. Households in the top 20% also
have smaller average home values and incomes, and they tend to have more adults, but are less
likely to have children. Account holders in the top 20% tend to be older, but with fewer years of
education. Lastly, top-20% homes tend to be newer, but less likely to be single-family occupancy.

In our second analysis of relationships between household attributes and treatment effect
prediction, we construct ‘heterogeneity curves’ non-parametrically. To do so, we follow the pro-
cedure of Knaus (2022). We use their ‘causal double machine learning’ strategy (and associated
‘cDML’ R package), applied to random forests, to generate treatment effect predictions. Then
we estimate spline regressions of treatment effect on a single household attribute based on the R
package ‘crs’ (Racine and Nie, 2024, and again see Online Appendix C.2 for further detail on this
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Fig. 7. Predicted Treatment Effect versus Household Type.

Notes: The x axis measures a different household attribute in each panel: (a) the social comparison
variable, (b) baseline consumption and (c) home value. The y axis measures the predicted treatment effect
as a function of the relevant attribute. The solid line and confidence intervals are estimated via spline
regression, using the causalDML R package (Knaus, 2022). The dashed line is a point estimate of the
average treatment effect. The sample includes all households with non-missing consumption in the year
prior to the program start date and each of the first three years following the program start date. See
Online Appendix C.3 for further implementation details.

procedure). In Figure 7, we present one heterogeneity curve for each of the three most commonly
split-upon variables: the social comparison variable, baseline consumption and home value.
Figure 7(a) shows a trend break around a value of zero for the social comparison residual, with
a larger positive value predicting a larger treatment-induced reduction in electricity consumption.
Panel (b) shows a near-linear relationship between treatment effect and baseline consumption:
the larger the baseline, the greater the reduction in response to treatment. Panel (c) shows
treatment-induced reductions fluctuating modestly below a home value of $350,000 and, above
that threshold, dropping steadily in home value. Put together, Figure 7 suggests that targeting
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for treatment (i) higher baseline consumption, (ii) lower home values and/or (iii) less favourable
would-be social comparisons may lead to increased social benefits.

4. Selective Targeting of Treatment

To further investigate the potential gains in program effectiveness from selective targeting, we
develop an exercise that simulates a planner’s decisions about whom to treat going forward based
on previously observed treatment effects. There are, of course, many possible objective functions
that a planner may seek to maximise; we focus here on maximising aggregate social net benefits
produced by the treatment. We note, however, that equity is an important component of the true
social welfare function. Thus, it is important to keep in mind what might be done for those who
do not receive this particular HER treatment—for example, tailoring the treatment to make the
reports more valuable for this group, or increasing spending on other programs for this group
(Reames et al., 2018).

For this exercise, we require estimates of the social net benefits produced by treating each
household with home energy reports. We use the following equation for predicted annual social
net benefits:

SNB,'Z—TE,'XlzXSMCe—MCHER+WTPi. (4)

Here, T E; is the predicted monthly treatment effect for household i, which we multiply by 12
to convert to an annual number; SM C, is the social marginal cost of electricity (which includes
both generation costs and environmental externalities); M Cy g is the marginal cost of sending
a household HERs for one year and WT P; is a household’s annual willingness to pay for
HERs. Treatment effect 7 E; can be taken from any prediction model, such as our causal forest.
We set SMC, = $0.065 per kWh, which is the short-run estimate of Borenstein and Bushnell
(2022) for the trio of states in our sample in 2016, shared by the authors. We set MC = $7.00
per household-year, based on consultation with Eversource.!” To estimate WTP for HERs, we
borrow from Allcott and Kessler (2019), who elicit WTP for HERs experimentally and report
results from a regression of household-specific WTP on the logarithm of income, indicators
for retirement, marriage, homeownership and single-family occupancy, and homebuyer’s credit
worthiness score. We use their regression coefficients to predict household-specific WTP in
our sample, given the characteristics of each household (we describe this in further detail in
Online Appendix C.4).

With these estimates, we can then compare the predicted social benefits produced by a given
household—here, the sum of its predicted WTP and the estimated social value of its predicted
electricity savings—to the marginal cost of sending the reports. Figure 8 graphically depicts
this comparison by plotting the (reverse) cumulative distribution function (CDF) of household-
specific, predicted social benefits in each of the first three years of HER programming alongside
the (constant) marginal cost curve. In every year, the CDF crosses the marginal cost line; that
is, there are always households whose predicted responses to HERs translate to net negative
benefits.

Taken at face value, the graph suggests that sending only to households whose induced annual
social benefits exceed seven dollars would yield aggregate net benefits equivalent to the area

10 The actual social marginal cost could be below the price charged to Eversource by Opower; in Online
Appendix Figure B4, we replicate our main targeting exercise using a marginal cost of $3.50 per household-year.
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Fig. 8. The Predicted Cumulative Distribution of HER-Induced Social Benefits.

Notes: Each downward-sloping line is the reverse cumulative distribution function of annual social
benefits produced by households in a given HER program year, estimated via our causal forest. The
sample is fixed across years: only households with non-missing consumption in all three post-years are
included. The line labelled ‘MC = 7" denotes the estimated marginal cost of sending one year’s worth of
HERSs to a household.

between the CDF and marginal cost curve, from the left edge of the figure to the two curves’
crossing point. However, there is no true hold-out sample in Figure 8; we use all households in
the growth of each forest used therein.!! To mimic the real-life planner’s targeting challenge, we
build a predictive model with one subset of the entire household sample and target using that
model in another entirely different subset. Our general algorithm is as follows.

(1) Split the full sample of available households into two: a training set for estimating the model,
and a test set for targeting and its evaluation.

(2) Estimate a predictive model with the training sample.

(3) In the test sample, predict household-level treatment effects (using the model estimated in
step (2)) and willingness to pay (using the model with parameters taken from Allcott and
Kessler, 2019 described above).

(4) Calculate predicted social benefits for each household according to (4).

1 Household predictions, however, are still “out of bag’—that is, based only on trees grown without the use of the
household in question.
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(5) Identify all test-sample households whose induced social benefits exceed marginal cost; this
is the group ‘targeted’ for treatment.

(6) Estimate an ATE in the targeted group.

(7) Calculate ‘actual” aggregate social net benefits in the targeted group using (4), but replacing
each targeted household’s predicted TE with the estimated ATE from step (6).

The causal forest is our predictive model of primary interest.'> However, we compare it to

several alternative model types that are simpler yet still data driven, as well as Opower’s actual
treatment assignment, to assess the relative improvement possible through machine learning.
We choose one machine learning and four regression-based alternatives to test, motivated by
convention and prior knowledge of HERs’ impact. The machine learning alternative is a lasso
(Hastie et al., 2025), which uses regularised regression to select variables and coefficient values
from a set of potential variables consisting of treatment status, the X vector and all interactions
between elements of the two. We think of the lasso as a sort of bridge between the causal forest
and the four regression models, it being a regression-based machine learning method.

Of the four non-ML regression-based alternatives, the first and simplest (which we denote
‘baseline’) is a linear model in which treatment effect varies only with baseline electricity
consumption. The sparseness of this model means that an electric utility could estimate it without
the need for demographic, socioeconomic or home attributes, and it also may lessen the risk of
overfitting. Furthermore, baseline consumption stands out as an important predictor of treatment
effect in our work as well as that of others before us (Allcott, 2011; Ayres et al., 2013). Given
Opower’s pre-existing preference for high baseline electricity users as experimental participants,
this first model can be thought of as a formal version of what has historically been done in the field.

Each of the next three regression-based models build successively on each other. The second
model (denoted ‘linear’) parameterises treatment effect to vary linearly with all fourteen of our
household characteristics. Our third model (‘parsimonious’) builds on the second by adding
interactions between treatment and the square of each characteristic. And, our fourth model
(‘interacted’) adds, on top of that, treatment interactions with the product of each pair of charac-
teristics. Throughout this exercise, we predict treatment effects in post-year two. We describe the
five alternative prediction models and other elements of the targeting exercise in further detail in
Online Appendix C.4.

In step (1) above, we try two different ways of splitting the full sample into training and
test sets. In the first, we split the full sample (N = 247,394) in half randomly. This splitting rule
facilitates a test of whether the forest would be accurate in a held-out group with the same average
characteristics; we therefore think of this first version of the exercise as a good evaluation of
each model’s internal validity. In the second, we split the full sample by the timing of the wave
start date; the training sample is composed of all households whose program wave started in
2014 (203,248 households), and the hold-out sample is composed of those with wave start date
in 2015 or 2016 (44,146 households). By using earlier waves to predict outcomes in later waves,
we better approximate the situation in which a utility (or any other service provider) might find
itself. In particular, the average characteristics of the two groups are very different in this second
version of the test—Online Appendix Table B2 documents this difference. The hold-out group
is, on average, a lower absolute consumer of electricity, but a higher relative user (as given by
our social comparison proxy). It also has larger homes and home values, but lower income. We

12 1n this targeting exercise, we grow forests consisting of 1,000 trees instead of 10,000 for computational tractability:
one of our bootstrapping procedures requires regrowing these forests 1,000 times.
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thus view this version of the targeting exercise as shedding light on the external validity of each
prediction method.

Figure 9 depicts, for each of the two versions of the targeting exercise described above, the
performance of the forest relative to each alternative model. Forest-based targeting in a random
hold-out sample produces an estimated additional $2.21 in annual social net benefits (SNBs) per
(sample) household relative to the Opower treatment assignment (the bottom bar in panel (a)).
This is a product of the forest yielding $2.79 in per-household benefits while the actual Opower
program yielded only $0.58, which represents a nearly five-fold (4.8 x) increase in net benefits
of targeting relative to the status quo. In particular, the Opower distribution treated 102,853
households out of a total 123,698 in this exercise, while the forest finds only 66,256 worth treating
according to the targeting rule. This difference is the aggregate effect of the forest switching
46,537 households from treatment to control and 9,940 households from control to treatment.

Figure 9(a) also shows that forest performance, as a point estimate, outperforms that of the other
predictive models. The ‘baseline’ and ‘parsimonious’ models produce the second- and third-most
benefits per person, respectively; the forest outperforms the baseline model by 9.8%. ‘Linear’,
‘interacted’ and the lasso do worse, but all models produce well over twice the social net benefits
of the status quo Opower assignment. We follow Gerarden and Yang (2023) and bootstrap to
generate confidence intervals on these differences;'? these are wide for all comparisons in panel
(a), but significantly different from zero in the case of Opower’s actual treatment assignment, the
lasso and the ‘interacted” model (in this last case, marginally so).

In the version of our test where we use earlier waves to choose households to target in later ones
(panel (b)), the forest continues to outperform both the Opower benchmark and all regression and
lasso models in the initial targeting sample. The forest produces 2.95 times the net benefits of
Opower’s actual distribution in post-2014 waves and outpaces the best alternative (the baseline
model) by 9.35%. This time, the differences between forest performance and linear, parsimonious
and interacted model performance are statistically significant (the interacted model fails to find
any households worth targeting), but forest performance is still indistinguishable from that of the
baseline and lasso models. A more conservative bootstrapping procedure yields slightly wider
confidence intervals, depicted in Online Appendix Figure B3. In addition, we find that raising the
number of bootstraps in our main procedure from 1,000 to 10,000 does not appreciably reduce
confidence intervals. Our inability to reject the null of equal welfare impacts across certain models
is consistent with Gerarden and Yang (2023): they found, in an analogous HER-delivery setting,
that the advantage of more complicated treatment rules (using the technique of empirical welfare
maximisation (Kitagawa and Tetenov, 2018), as a function of attributes) relative to a treatment
rule solely determined by baseline consumption is not statistically significant.

We also present results of several variations on the targeting rule in Online Appendix B. Online
Appendix Figure B4 employs a marginal cost of $3.50 instead of $7.00, in acknowledgement of
the possibility that the true social marginal cost of HER delivery is lower than what Eversource
pays. Online Appendix Figures B5-B7 target households in the top quantile (half, quartile
or decile) of predicted social net benefits for treatment, instead of households with positive
predicted net benefits. In these iterations, the forest usually, but not always, performs better

13 Figure 9 uses a ‘fixed-rule’ bootstrapping procedure, in which the treatment assignment chosen by each model in the
initial run of the targeting exercise is held fixed across all bootstraps; only the sample changes. Online Appendix Figure B3
shows confidence intervals from a non-fixed-rule procedure in which each bootstrapped sample is used to run a new
forest producing a new treatment assignment. See Online Appendix C.5 for a fuller description of our bootstrapping
procedures.
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(a) Training on a random sample
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(b) Training on 2014 waves
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Fig. 9. Social Net Benefits of Targeting, by Predictive Method.

Notes: The top bar is the estimated annual SNBs produced from the treatment assignment chosen by the
forest, relative to a no-action counterfactual. Each other bar depicts the estimated annual gain in SNBs
produced from targeting using the forest instead of the listed alternative method. The targeting rule is to
treat if predicted SN B > 0. Net benefits are expressed as an average per household in the full test sample,
so that panels (a) and (b) are more comparable. Panel (a) depicts results from building all predictive
models with a 50% random sample of households and targeting in the other 50% ‘test’ sample. Panel (b)
depicts results from building all predictive models exclusively with households in HER waves beginning
in 2014 and targeting among waves beginning in 2015 or later; the ‘interacted’ model is not included in
panel (b) because it does not identify households that satisfy the targeting criterion. Confidence intervals
are generated via bootstrapping, which we describe in greater detail in Online Appendix C.5.

© The Author(s) 2025.

GZ0Z 194010 +Z U0 Jasn ueBIyol Jo Ausioniun Aq €/8/€18/1/€2/2.9/SE L/9IIME/fo/wod dnooiwspeoe)/:sdjy Wwoij papeojumoq


https://academic.oup.com/ej/article-lookup/doi/10.1093/ej/ueaf028#supplementary-data

2025] USING MACHINE LEARNING TO TARGET TREATMENT 2399

than comparison models, with the baseline model continuing to provide the stiffest competition.
The lasso, meanwhile, is the clear next-best model when we target in later waves using earlier
ones (the stiffer test of external validity). The comparable performance across the board of the
one-dimensional baseline model with the forest may reflect the specific treatment in question, as
the literature on HERs overwhelmingly finds absolute baseline consumption to be the strongest
predictor of treatment effects. It may also (or alternatively) reflect our lack of data on the exact
social comparison that households receive: our proxy for this comparison is the most frequently
used splitting variable in the forest, but using it nonetheless introduces measurement error.

In any case, when using earlier waves to target later, rather different waves, the two machine
learning (forest and lasso) models and the simplest regression (baseline consumption) model tend
to do better than the three more complicated regression models. This pattern reinforces the notion
that avoiding overfitting is valuable, because the better-performing models involve active steps
to address overfitting, while the worse-performing models do not. The forest and lasso models
counteract overfitting algorithmically through subsampling and regularisation, respectively. The
baseline regression model does so by restricting the treatment effect to vary only (and linearly)
with baseline consumption.

5. Conclusion

This paper brings together two recent innovations in economics: first, machine learning, which
holds great promise as a tool for high-resolution evaluation and prediction; and second, the
increased use of nudges within government and business programs. We empirically assess the
latter using the former, in the context of a large-scale experiment promoting household energy
conservation. We leverage fifteen experimental waves covering more than 900,000 households,
in which the treatment is a periodic social comparison message designed to nudge households
to reduce electricity consumption. We use the causal forest ML algorithm, an ensemble method
based on classification and regression trees, adapted for causal inference.

The causal forest we estimate reveals several facts about treatment effects in this context.
First, there is wide variation in responses to the nudge. The overall average treatment effect is
a 9 kWh monthly reduction in electricity consumption, but individual effects range from —1 to
—33 kWh. Second, higher absolute and relative consumption (in comparison to neighbours) are
both (simultaneously) predictive of larger treatment-induced reductions in electricity use. These
and home value are more frequently used in the forest than all other household attributes. Third,
while treatment effects are almost entirely negative (that is, reductions), for many households,
they are not large enough to be predictive of positive social net benefits from treatment. Put
together, the forest-identified variation in treatment effects suggests the potential to improve
program effectiveness through targeting and tailoring of treatment.

To test this potential, we develop an out-of-sample prediction exercise that mimics how
targeting may be done in the real world. The exercise allows us to compare the benefits of forest-
based targeting to those of the actual treatment assignment as well as five alternative targeting
methods. When training and hold-out samples are randomly drawn, the forest produces nearly
five times the aggregate social net benefits as the Opower program and 10% more benefits than
the best non-forest predictive method. When we train predictive models on 2014 waves and target
in post-2014 waves (which are very different), the forest produces nearly three times the benefits
of the Opower program and 9% more benefits than the best alternative. The forest’s advantage is
statistically significant relative to some, but not all, alternatives; our pattern of results suggests
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that the models best set up to minimise overfitting (in our case, the two ML models and the
sparsest regression model) tend to perform best.

At a high level, our context, methods and results comprise a case study that can be a useful
resource for those considering the selective targeting of some treatment, intervention or program
using machine learning methods, especially causal forests. Our results show how forests could
potentially be used by firms and policymakers to improve program effectiveness and social
welfare through targeting. In addition, they point to the possibility of even further welfare gains
through selective failoring of treatment: those whom targeting identifies as undesirable to treat as
is are strong candidates to receive adjusted treatments or programming that meets their specific
needs. All told, we believe that ‘disciplined’ high-resolution predictive methods like causal
forests have the potential to be a helpful tool for improving cost effectiveness, social welfare
and/or distributional equity in a wide variety of settings.

Massachusetts Institute of Technology, USA
University of Michigan, USA

Additional Supporting Information may be found in the online version of this article:

Online Appendix
Replication Package
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